
I . Report on an Evaluation Study

of Data Flow Computation

George B. A d a m I11
Robert L. Brown
Peter J. Denning

Research Institute lor Advanced Computer Science

RIACS T R 85.2
April 1985

(N A S A - C R - 1 8 1 3 0 2) REPORT ON A N E V A C U A T I O N
STUOY OF D A T A FLOW COMPUTATfON (Research
I n s t . for A d v a n c e d Computer Science) 63 p

N90-71371

uncl as
00/61 0295390

L
L

L Rl ACS
Research Institute for Advanced Computer Science

Report on an Evaluation Study

of Data Flow Computation

George B. A d a m I11
Robert L. Brown
Peter J. Denning

Research Institute for Advanced Computer Science

RIACS TR 85.2
April 1985

Prepared by RIACS under NASA Contract No. NAS 2-11530 and DARPA Con-
tract No. BDM-S500-OX6000. The contents of this document do not represent
the official position of NASA or DARPA.

EXECUTIVE SUMMARY

In September 1981 RIACS conducted a two-week study of the proposed
LIIT stat ic data flow machine for applications of interest to S A S A Ames and
DARPA. S.4S.4 and RIACS scientists formed seven one- or two-person teams
to study data flow concepts. the static data flow machine architecture. and the
VAL language. Each team mapped its application onto the machine and coded
it in VAL.

The application areas were computational fluid dynamics. computational
chemistry, galactic simulation. linear systems, queueing network models, and
artificial intelligence. The considerat ions for mapping these applications onto
the machine were primarily architectural: the number of individual processing
elements (PE). the size of the instruction memory in each PE, the speed of the
PES, the instruction issue rate. the size of the routing network among the PES,
and the size and speed of the array memory. The goal in mapping was to max-
imize the number of busy PES and to minimize the traffic on the routing net-
work. The target machine contained 256 PES and was capable of an aggregate
rate of 1.28 GFLOPS.

1.

2.

3.

4.

The principal findings of the study were:

Five of the seven applications used the full power of the target machine -
they sustained rates of 1.28 GFLOPS. The galactic simulation and mul-
tigrid fluid flow teams found that a significantly smaller version of the
machine (16 PES) would suffice.

A number of machine design parameters including PE function unit
numbers. array memory size and bandwidth, and routing network capability
were found to be crucial for optimal machine performance. Thus, studies of
this type can provide valuable feedback to machine architects.
The study participants readily acquired VAL programming skills. A very
high level programming environment is essential to make the data flow
machine usable by most programming scientists. however. because of the
complexity of the machine architecture. For example. tools to aid debug-
ging and mapping VAL programs onto the architecture are required.
We learned that application-based performance evaluation is a sound
method of evaluating new computer architectures. even those that are not
fully specified. During the course of the study we developed models for
using computers to solve numerical problems and for evaluating new archi-
tectures. We feel these models form a fundamental basis for future evalua-
tion studies.

PREFACE

This report describes a study held at RIACS during September 17-28. 1984.
The study participants were:

George Adams. RIACS
Eric Barszcz. S.4SA Ames Research Center
Richard Briggs, RIACS
Robert Brown. RIACS
Peter Denning, RIACS
Scott Eberhardt. XASA Ames Research Center
Eugene Levin. RIACS
Marshall Merriam. NASA Ames Research Center
Harry Partridge. RIACS
Merrell Patrick, RIACS
Karl Rowley. SASA Ames Research Center
Catherine Schulbach, XASA Ames Research Center
Ken Sevcik, RIACS

Instruction in the data flow computer architecture and programming language
used, as well as consultation and guidance. was provided by

Jack Dennis, MIT
William B. Ackerman, MIT
Gao Guang-Rong, MIT

Although Adams, Brown, and Denning took primary responsibility for
preparing this report, all these people contributed significantly to the report.
The individual team report summaries included herein were largely prepared by
the team members.

TABLE OF CONTENTS

Page
1 Introduction ... 1

2 2 Background and Motivation ..
2.1 Matching Computational Models and Problems 2
2.2 Approaches to Evaluating Machine Performance

3 Problem Solving Process ..
3
5

4 Methodology ..
5 The MIT Static Data Flow System ..

5.1 Model of Computation ..
5.2 The Machine ...
5.3 The Language ...
5.4 The Compiler ..

6 Overview of Individual Projects ...
6.1 Computational Fluid Dynamics - 1
6.2 Computational Fluid Dynamics - 2
6.3 Computational Chemistry ..
6.4 Galactic Simulation ..
6.5 Linear Systems ..
6.6 Artificial Intelligence: Xatural Language Processing
6.7 Queueing Network Analysis ..

7 What W e Learned: Comments from the MIT Group
7.1 The Machine Configuration ..
7.2 Program Debugging ..
7.3 Array Memory ..
7.4 Applicability to AI Problems ..

8 Conclusions ..
8.1 Programming ..
8.2 Architecture ..

8

11
11
11
14

15
18

18

21

23

26
27

30
33

38

38

39

39

40

4 1

4 1

42

8.3 General ... 44

8.4 Further Work ... 45

9 References .. 46

APPENDICES ... 49

10 Machine Cost Estimate .. 50

11 Questionnaire and Responses ... 5 1

1. - Introduction
During September 17-28, 1984, the Research Institute for Advance Com-

puter Science (RIACS) conducted a data flow computation study. The purpose
was to develop an assessment of the effectiveness of data flow programming
using a specific data flow machine architecture for computational problems in
several disciplines of interest to the sponsors. NASA Ames and DARPA. These
areas were:

computational fluid dynamics
computational chemistry
galactic simulation
linear systems
artificial intelligence
queueing network models

Seven teams. each consisting of one or two scientists. studied data flow pro-
gramming concepts. expressed important algorithms in the VAL programming
language, and investigated how best to map their algorithms onto the MIT
static data flow architecture. Three researchers from MIT (Jack Dennis, William
Ackerman, and Gao Guang-Rong) served as teachers and consultants. RIACS
provided the offices and computing equipment, planned and organized the
schedule, collected the data and results, and produced this report.

This report contains an overview of the study: what took place and what we
learned. Included is a summary of the individual projects and their conclusions.
The reader is advised to read carefully and critically, and add his own conclu-
sions to those we present.

Because of the two-week time constraint, we were unable to do several
things that might have improved the evaluation of the static data flow machine.
We were unable t.0 run complete VAL programs through the interpreter because
the algorithms and programs used by the teams were too complicated to code to
completion during the workshop. Because of this, we could not directly compare
the cost and time to run the VAL versions to the FORTRAN versions run on the
Cray X-MP. We believe these comparisons are' worthwhile; they are left for
future study.

2. Background and Motivation

2.1. Matching Computational Models and Problems
The computational needs of science and engineering have reached the limits

of single-processor supercomputer technology. It is unlikely that by 1990 there
will exist a single-CPU computer capable of more than 2 or 3 GFLOPS (Giga
Floating Point Operations Per Second) but routine problems in science and
engineering will demand computers 10 or 100 times that fast.’ See [Adam84].
The required computational power is attainable only with computing systems
consisting of many machines executing simultaneously on a different parts of the
solution. Here “many” means hundreds or thousands of machines. Such sys-
tems are called “concurrent processing systems.” (VLSI circuit technology com-
plements this direction in computer architecture.)

Computer scientists have traditionally studied “models of computation,”
ranging from the inherently sequential, as with the common program-counter
based model, to inherently parallel, as with data flow. Each of these models may
have one or more abstract machines that implement them and these abstract
machines may in turn be realized by concrete machines. A popular model of
parallel computation frequently realized by a large set of sequential machines
communicating over a network. This adds a new level of complexity to program-
ming which now must explicitly consider the communication and synchronization
among many parallel activities.

Now: For any given class of problems there may exist several qualitatively
different practical, parallel algorithms that solve problems from that class. Some
of the models (hence, machines and associated languages) will be well suited for
a given algorithm, others not. Thus, in the world of concurrent computation, it
becomes interesting - and important - to ask, “Which combinations of
problem-domain and models (computation and communication) are most
effective?” The answers will be based on evaluations of two kinds:

1. Objective assessments such as program size, running time, and cost per
solution. These assessments can be made partly by mathematical analysis
and partly by experiment.

Subjective assessments of human factors such as programming time, ease of
finding good solutions using the given architecture, understandability of
programs, and quality of the programming environment. These assessments
must be made by experiment.

Evidently, a large effort would be required to systematically compare architec-
tures among various disciplines in order to answer the question. How to organ-
ize such an effort is the subject of another report (Adam851.

2.

‘Becaure problem-time u often a polynomial (or worse) function of problem-sice, it is inevitable that computational
needr will surpam the power of Sequential machiner. For example, if the beat algorithm for a problem taker time n’, a
double-#peed CPU could handle a problem only about 40% (factor of A) larger in the same amount of time.

The RIACS data flow computation study was a first attempt to answer the
question for a specific machine (the MIT static data flow machine) and selected
disciplines. The two specific purposes were:

1. To obtain a preliminary answer to the question, “How effective is data flow
computation, as realized in the MIT V A L language and static data flow
machine, at solving problems in disciplines where IL‘ASA and DARPA are
seeking breakthroughs in computational power?”

2. To experiment with a prototype for studies that identify the most effective
combinations of domain and models.

The results of this study are not a final answer to the question posed in (1)
immediately above. The reasons include the following:

1. Since no one has prior experience with such studies, we could only make
educated guesses at the methodology that would allow data flow computa-
tion to be compared across a variety of dissimilar disciplines.

Xot all disciplines of interest to XASA and DARPA were covered because
the release time for scientists participating in the study was difficult to
negotiate.

Only a handful of relatively simple algorithms for solving “kernel problems”
of the participating disciplines could be addressed in the short time avail-
able (two weeks). One must use caution in extrapolating the results to
larger problems, full systems, and complete disciplines.

2.

3.

2.2. Approaches to Evaluating Machine Performance
k-els a t which to evaluate the performance of any comput-

ing system. They differ in their requirements on the amount of support required
to program them and in the knowledge required to perform the evaluation. The
four levels are as follows:

TI....-... .._I &?---- _ _ _ _ _ _ -_-

1.

2.

3.

Raw performance evaluation. The burst performance of a machine,
expressed in operations per second, may be computed from knowledge of the
clock speeds, memory and register speeds, and bus speeds. This provides an
absolute upper bound on the speed of any computation performed on a
machine, but achieving it in any real computation is a practical impossibil-
ity. No programs need be written to evaluate a machine at this level.

Small function programming. Small common functions, such as matrix
multiply or FFT, are meticulously coded, usually in machine or assembly
language, to achieve maximum speed. The functions are run on the
machine and tuned. The only programming support needed is a compiler or
an assembler.
Benchmark programming. An existing software package, such as LIN-
PACK, or a software standard, such as Livermore Loops, is programmed for
the machine. It is run and timed for a particular input. Programming

-3-

support requires compilers, linkers, and an operating system.
4. Complete application programming. The machine is evaluated by pro-

gramming and observing an entire and real application on it. The program-
ming is usually best performed by experts in the domain of the application.
An entire programming environment consisting of editors, compilers, link-
ers. and debuggers is required.

The first level is cheap, but crude, and gives no information about the
machine’s programmability. The second level gives good ways of “stress-testing”
to discover the fraction of instantaneous rate delivered to tightly-coded routines.
The third level provides a basis for comparing the new machine to existing
machines running the same standard software. The fourth level gives an assess-
ment of the machine’s programmability and its applicability to a particular
domain.

Our goal in this study was to shed light on the “best-match” question
described earlier. Because this inherently includes the question about the pro-
grammability of the machine, we were obliged to undertake the evaluation at the
fourth level.

3. Problem Solving Process
Because this study focuses on the ability of a machine to support problem-

solving in given disciplines. it is necessary to consider explicitly the process one
uses to solve a problem computationally. The problems considered by our teams
had been previously solved by FORTRAN programs running on DEC VAXes or
Cray computers. Using the model for problem solving. we hoped to determine
the best place to deviate from the previous solution path to the optimal solution
path targeted for the MIT static data flow machine. It should be noted that this
model is not general-purpose, but it describes the process used in the disciplines
in our study fairly well.

Our model says that the problem-solving process consists of a sequence of
increasingly detailed solution representations, the transformations between them,
and the knowledge required to perform those transformations. The sequence of
representations culminates in a computer program. Initially, there exists a
(prose) problem statement. We call this stage zero. Using knowledge of his dis-
cipline, the scientist first states a solution to the problem using the language of
mathematics, usually continuous mathematics. This solution may be a simple
function or a complicated sequence of equations. We call this stage one.

The next step is to transform the solution mathematics into an abstract
(machine independent) algorithm. If there is no direct way to solve the problem
using the mathematics, this is the stage at which the approach to the numerical
simulation is determined. This transformat ion introduces discrete approxima-
t ions to continuous mathematics, numerical methodologies, algorithmic
approaches, error controls. recursions, and partitions into potentially parallel
components. The knowledge used includes those techniques, and knowledge of
the particular model of computation implemented by the target machine, though
not necessarily detailed architectural parameters. The language used here is a
combination of discrete mathematics and a high-level pseudo language. We call
this stuge two.

The third step is to render the abstract algorithm as a program in a com-
puter language. This transformation includes decisions about data representa-
tions and control flow-. The knowledge needed includes the definition of the com-
puter language used and the architectural parameters of the machine. We call
this stuge three.

The final step is to translate the program of stage three into a machine
code. This step is usually performed by a compiler embodying knowledge of the
instruction set and data representations of the machine.

In the context of our study, the sequence of stages is depicted by Figure 1.
When employing a new machine of different architecture and model of computa-
tion from the current machine, it is best to backtrack to stage one and formulate
a new abstract algorithm better suited to the new model of computation. If,
however, the new machine is not based a new model of computation, as is the

- 5 -

Start Here if
Model of Computation

Changes

Problem
Statement

Mathematical
Model

Work done within
the discipline, may
predate computing

Involves discretization,

2

Start Here if

1 approximation,
partitioning, divide

Abstract
Algorithm

discrete math.

/

.................................. ..+. ..

Machine d
Program

4

tz3 mach. lang.

and conquer

Involves mapping
to specific

architecture

Compilation and
optimization, with
or without human

intervention

Figure 1. Steps in Problem Solving

- 6 -

case when moving an application from one vector processor to another, backing
up to stage two may be adequate.

We observed that in our study. most participants backtracked to stage two
as given. They reported that the abstract algorithms for their problems were
already in a highly parallel form. though it required thought and examination
over several days to discover this. That five of the seven teams then constructed
codes that ran at the full speed of the machine tended to confirm their beliefs.
However. in future studies. it would be well to require teams to provide explicit
arguments why a further retreat to stage one would produce no significant
benefit. Existing algorithms for a given application that readily allow even a
great deal of parallelism cannot be assumed prima facie to be high performance.

- 7 -

4. Methodology
The study participants were organized into teams. Team members were

experts in their respective disciplines and knowledgeable in the use of supercom-
puters for the solution of problems in that discipline. The team members and
their disciplines are given in Table 1.

Team members were volunteers who were personally interested in the study.
They were chosen to constitute a cross-section of the research areas of interest to
the sponsors. Obtaining release time for some researchers was difficult; two
weeks was the maximum time for which most could be available.

Table 1. Study t eams.

Discipline Team Members
________ ~~

Computational Fluid Dynamics I Scott Eberhardt
Karl Rowley

Computational Fluid Dynamics I1 Marshall Merriam
~~

Computational Chemistry Harry Partridge
Eugene Levin

~~ *
Galactic Simulation Eric Barszcz

Cathy Schulbach

Linear Systems Merrell Patrick

Artificial Intelligence Rick Briggs

Queueing Xetworks Ken Sevcik
Peter Denning

*
This team comprised proxies for the original algorithm designers, who were un-

able t o be present personally.

- 8 -

Team selection was complete-one month prior to the study. At that time,
team members were given some general information on data flow that they could
read a t their convenience. There was no formal instruction in data flow prior to
the study. nor had any of the participants received any. ,411 team members were.
however. previously aware of data flow computation.

Each team brought a working program or detailed algorithm specification
from its application domain to the study. The study began with intensive
instruction in data flow concepts and the programming language VAL conducted
by the MIT contingent. Thereafter the teams sought to apply data flow metho-
dology to their algorithms. Each team, with assistance as needed from MIT per-
sonnel, programmed and transformed their application for execution on a data
flow computer.

The first four days of the two-week study consisted of half a day of lecture
and discussion and half a day of team study and programming. The remaining
six days were team study and programming, with occasional reports by team
members to the entire group. The lectures early in the workshop concentrated
on the V.4L language and the architecture of the MIT static data flow machine
as proposed for this study. During these early days, the participants wrote sam-
ple programs to familiarize themselves with the VAL language and the RIACS
computing system. We anticipated that it would take one full afternoon for par-
ticipants to familiarize themselves with the system; it took about one hour. We
anticipated it would take one week for them to learn VAL; it took three days.
The steps they carried out were:

1. Characterize their application in terms of computational blocks and flow of
data among blocks. (This is called “pipestructured data flow methodol-

Select representative and critical blocks for coding in VAL.
Design the structured data flow machine code.

Evaluate the performance the specified static data flow computer would pro-
vide.

Iterate the above steps (time permitting) to obtain improved solutions.

ogy 3
2.

3.

4.

5 .

The participants used the RIACS computer facility to conduct this work.
Arrangements were made to provide office space for exclusive use by the

study. This also removed the participants from their daily milieu of telephone
calls and other distractions and increased the amount and quality of time the
participants devoted to the study. By providing emulators, we attempted to
minimize necessary operating system interaction and to simulate the command
level interface of the editors familiar to the participants. In this way team
members spent the majority of their time on data flow investigation, rather than
on learning a new operating system and editor.

- 9 -

During the work/programming hours, the MIT researchers worked closely
with the teams, helping them map their codes onto the data flow machine.
Throughout the study, RIACS personnel helped with problems related to the
facility. and collected data concerning the reaction of the team members to data
flow and their success at using the language.

Each team prepared a report on its work during the study. These reports
are summarized in the following sections overviewing the team projects. The full
reports are to be available as separate RIACS and NASA technical reports. In
addition, we handed out a questionnaire aimed at determining the participants’
reactions to data flow programming and the format of the workshop; a summary
appears in an appendix.

During the study. the VAL translator was used approximately 500 times.
We captured most (62%) programs that passed through the translator (some
were not because we assumed participants would consistently use file names of
the form narne.ual for all VAL programs; some did not). All interpreter files,
interpreter dialogs. and compiler error messages were captured. This allows us
to “replay” any captured portion of the study. Participants were not informed
that programs were being captured so that their use of the VAL system would
not be biased.

- 10-

5. The MIT Static Data Flow System
[Editors’ note: The technical specification of the MIT static data flow machine
and VAL was provided by the MIT team].

The description of the data flow system has four parts: the model of compu-
tation, the machine architecture to implement that model. the language VAL
used to program the machine. and the optimizing compiler for VAL.

5.1. Model of Computation
The model of computation implemented by data flow is significantly

different from the more familiar control flow model used in traditional Von Neu-
mann machines. This section describes the basic concepts: for a thorough over-
view. see [Davi82].

-4 data flow computation is represented as a directed graph, each node
representing a single operation and having one or two incoming edges and a sin-
gle outgoing edge. Conceptually, an outgoing edge may be split and become an
incoming edge for several other nodes. Data values move as tokens on the edges
of the graph. When a node has a token on all of its incoming edges, it becomes
enabled to perform its computation, or “fire,” consuming the incoming tokens
and generating a result token on the outgoing edge. Generally. firing rules
include the condition that there be no token on the outgoing edge.

Loops can be created by making the graph cyclic, and imposing initial con-
ditions on some edges. Additionally, conditionals can be created by using special
nodes with an added Boolean input. One type of conditional node passes one of
its two inputs to its output depending on the state of the Boolean input. The
other type of conditional node passes its sole input to one of two output depend-
ing on the flag.

Large programs can be composed of smaller graphs, and parallelism can be
achieved because of the firing rules. Since the edges on the graph represent the
data dependencies among the operations, any node with all its inputs satisfied
may be fired, regardless of whether other nodes around it are currently firing.
Likewise, data may be pipelined through a data flow graph, with the initial
nodes in the graph consuming input in streams [Gao82].

5.2. The Machine
Many of the design parameters of the machine under study are not firm.

What follows is a description of the machine as presented a t our study by the
MIT group and used by the participating scientists. During the course of the
two weeks, some of the parameters changed slightly, and they may continue to
change in the future, perhaps as a result of this study. Other designs for data
flow computers exist, for example [Gurd85, Rumb771.

The data flow supercomputer suggested as the target for the performance
study consists of 256 processor elements interconnected through a routing

- 11-

network. Each processor is capable of executing any data flow element, and gen-
erally the whole program is partitioned and spread across all processors in a way
that preserves locality. Cnder the best conditions, the result of an operation will
be only needed in the same processor in which it was computed, however. if it is
needed in another processor. it will be sent through the network. Each processor
has a separate instruction store and array memory. 1 / 0 devices and mass
storage are attached to the system through the network. A block diagram of the
architecture is shown in Figure 2.

Each processing element (PE) is designed around the Weitek 64-bit floating
point chip set. It includes one adder chip capable of 5 to 8 MFLOPS perfor-
mance and two multiplier chips capable of 1.25 to 2.0 MFLOPS performance
apiece. The instruction cell memory of a PE is divided into two regions - 1024
cells for floating point operations (primarily adds. subtracts. and multiplies), and
1024 cells for "red tape" instructions (the integer arithmetic. buffer manipula-
tion, tests. etc.. needed to control the floating point computation). The idea is
that each PE should easily hold enough red tape instructions to ensure that the
floating point chips are kept busy.

Assuming that a floating point (FP) operation is begun every 200
nanoseconds, and it takes at most 2 microseconds to completely process an
enabled instruction (from setting its enable flag to setting the enable flags of tar-
get instructions), ten active FP instructions are sufficient for the PE to run at
peak FP rate. If a pipelined section of machine code is spread over many PES,
and the pipeline headway is 50 microseconds, then each PE will have to hold 250
FP instructions of the pipeline to operate at peak performance.

There are several reasons that more than 250 FP cells should be provided:
(1) Due to conditional computations there will be some FP cells that are not
used on every pipeline cycle. (2) Some computations will run in several phases,
and, to achieve full performance, each phase separately will have to fully utilize
every PE; hence each PE will hold code for each phase of the computation being
performed. (3) Miscellaneous instructions will be needed for initialization,
input/output, and for other functions peripheral to the main computation. It
may turn out that the total of 2048 total instruction cells is too low.

The square root and divide operations (actually reciprocal square root and
reciprocal, respectively) for floating point values will be supported by performing
Kewton iterations from an initial guess obtained from a ROM.

The routing network (RN) has an input and an output port for each of the
256 PES and and additional set of 256 input and output ports for mass memory
devices, display systems, and the host processor. The RN will have nine stages
with 256 two-by-two routers in each stage, for a total of 2304 router modules.
The links between routers have a 16-bit data path and can operate at 5 MHz or
better. A typical result packet sent through the network consists of an 8-byte
FP value and four bytes for target PE and instruction cell identification, etc.
Thus a router will accept a packet in 1.2 microseconds. Because of contention,

- 12-

RN

PE

IS
AM

I/O

RN - I I

Routing Network. 512 by 512, 16 bit data paths, operates at > 5MHz,
average rate of transmitting FP packets 0.25 MHz from a single PE to
another.
Processing Elements. 5 to 8 MFLOPS with 1.25 to 2 MFLOP multiplies.
256 PES in the system.

Instruction Store. 1024 cells for FP instructions, 1024 for others.
Array Memory. Size not fully determined. A t least 256K 64 bit words per
PE.
Input /Output. Includes mass memory, host processor, display systems. 256
ports to the RI\I are reserved for I/O.

Figure 2. Static Data Flow Machine Architecture

we assume that the network operates from PE to PE at 30 percent its maximum
rate (this derating assumption may be subject to significant change once actual

- 13-

experience is gained), yielding a communication rate of 0.25 MHz. A simulation
study of the Delta network (topologically equivalent to the RN) shows the need
for derating performance (Dias811.

The amount of array memory to be attached to each processing element is a
matter of debate. For the study 256K words of 64 bits for each PE, making a
total of 60M words in the machine, is assumed. The transfer rate for this
memory is 2 MHz or better, and the latency for reading is about two
microseconds. The desirable performance of the array memory is also controver-
sial.

The Array Memory is supplemented by a Disk Storage System (alterna-
tively. a solid state mass memory) that communicates with the PES through the
Routing Xetwork. The performance to be expected from the disk system is
about one megabyte per second transfer rate for each disk unit of which there
might be 32 or 64. for example. This yields a total of 4 or 8 million FP values
read or written each second. The disk capacity available could be huge, but
there is little hope of exchanging t h a t excess capacity for greater transfer rates
without expensive redesign of the disk units.

5.3. The Language
The MIT team has developed the language. VAL. for the dat,a flow machine.

This language is described in [Acke82] and documented in [Acke79].
The language is functional in nature and is value-oriented. It is similar to

most modern languages in that all the common scalar data types are supported,
as are arrays and aggregate types. The primary difference is that all data are
treated as values, not objects. In an object-oriented programming language,
computations take the form of operations on objects, either to extract informa-
tion or to change the state of an object in a controlled, well-defined way. In
VAL, however, there are no data objects, only values. Hence, it is not possible to
make elemental changes to arrays, for example. Instead, new arrays are made of
old arrays by changing elements.

Programs are constructed of functions in VAL, and each function may com-
pute one or more values. No static storage is permitted within functions, as the
data flow model of computation itself has no concept of static storage.

Two control structures within VAL deserve special mention. These are for-
iter and forall-construct. Both of these control structures define program
loops. Program loops for iteration have four basic parts: (1) definition of initial
values of control variables, (2) loops termination test, (3) computation per-
formed by the loop, and (4) modification of loop control variables for next itera-
tion. The for-iter construct in VAL makes the four parts distinct because (4)
invariably takes the form of assignment statements to replace the old values of
the loop control variables with new values, a side effect that is not normally per-
mitted in the language. This case denotes an inter-iteration dependency that
usually cannot be computed in parallel. However, depending on the nature of

- 14-

the computation, the compiler may try to discover potential parallelism in (3) ,
the loop computation.

Program loops are also used to create arrays. In this case, there often are
no inter-it,eration dependencies, and each iteration may be computed in parallel
with the others. For this reason. V.4L has the forall-construct, which allows
the programmer to define the construction of one or more arrays. An example of
the use of forall-construct is as follows:

x. Y :=
forall I in [I, S]

A : real := f(1)
construct I, A

endall

In this case. the machine can compute all I\; values of the two arrays in parallel,
and the results will be available as the values X and Y.

5.4. The Compiler
The MIT compiler for VAL generates an intermediate language and will be

targeted for the static data flow machine.

Optimizations and mapping decisions made by the compiler are of critical
importance [.4cke84]. The compiler that MIT intends to construct will perform
at least the transformations given below. Until a great deal of additional experi-
ence is obtained. they expect that the decisions about optional or “parameteriz-
able” transformations will not be made automatically. They will be made under
the control of information provided by a human. This will take the form of an
“advice file” associated with each program. Once the advice is given, the indi-
cated transformations will be made automatically.

Of the transformations listed below, the most important are loop unfolding,
array interlace, streaming, and pipelining.

Small Array and Record Removal. Small arrays (say 10 elements or
less) are often best handled by being broken up into separate tokens containing
the individual values. Small forall loops creating such arrays will be similarly
expanded. For example

A := forall I in (1, 31 construct f(1) endall ;
will become separate subgraphs to compute f (l) , f(2), and f(3), which will be
passed through the graph on separate edges. References to A[2], for example,
will then become trivial.

Records will be treated as small arrays and handled similarly.
Array and Loop Transposition. If we have a large forall inside a small

one, as in

A := forall I in [l, 31

- 1s-

construct forall J in [l, lOOOO] construct f(1, J) endall
endall ;

the outer forall and outer level of the array will be removed as described above,
resulting in three separate foralls creating three separate one-dimensional arrays.

If they are in opposite order. as in

A := forall J in [I. lOOOO]
construct forall I in [l. 31 construct f(1. J) endall
endall :

the loops will be “transposed”, that is, their nesting will be reversed. All subse-
quent references to the array A will be likewise transposed, turning A[P+Q,S]
into A[3.P+Q]. The removal of the small array and small forall can then
proceed. This transformation is important in such things as block-tridiagonal
matrix processing.

Loop Unfolding. In any repetitive calculation extra parallelism among the
cycles will be exploited by evaluating many cycles a t once in different parts of
the data flow graph. For example, if a loop is unfolded by a factor of 8, there
will be 8 separate loops in the data flow graph, all running approximately in step
with each other. The first piece will evaluate the first cycle of the original loop,
then the 9th, then the 17th. etc. The second piece will evaluate the 2nd cycle,
then the 10th. and so on.

How much unfolding to perform, and how to map the separate pieces onto
the different processing elements of the computer are decisions that will come
from the advice file. Often, the number of pieces will be greater than the number
of processing elements, so each processing element will contain several pieces.

When a loop that accesses an array sequentially is
unfolded, it will be appropriate to separate the array into a number of pieces,
with each piece of the loop accessing its own private piece of the array. This
reduces int er-processor communication and increases the effective bandwidth of
the memory system.

The division of the array will usually take the form of interlacing, with the
first piece holding, in consecutive locations, A[l] , A[9), A[17]. etc, the second
holding A(2], A(10]. A(18]. and so on.

Streaming and Pipelining. A great many loops that manipulate arrays
do so by performing the same computation repeatedly on each element of the
array. When this occurs, the array is processed as a stream of scalar values
passing through the data flow graph in sequence. Different parts of the program
can pass arrays to each other in this form, without storing them in memory dur-
ing intermediate stages of the computation.

When an array is too large to fit in the RAM and must be stored on the
disk, it will be transferred to and from the data flow graph in the form of a
stream.

Array Interlacing.

- 16-

Loops that process arrays as streams of tokens will be pipelined [Denn83].
The graph that comprises the body of the loop will have many consecutive

waves” of tokens inside it in various stages of progress. This is the principal
method by which the percentage of operators that are enabled is increased to
improve utilization of the processing units.

L L

- 17-

I

6. Overview of Individual Projects
What follows are summaries of the individual team reports prepared largely

by the teams themselves. They have been edited as necessary to conform to a
common style and meet space constraints. Most of these summaries are distilled
from full-length reports prepared for publication by the team members. The
form of each summary follows that presented in the section on problem solving
techniques. with the addition that some background information is given in the
"Problem Overview." section. For reports on previous studies on mapping appli-
cations on the MIT static data flow machine. see [Denn84a. Denn84bl.

6.1. Computational Fluid Dynamics - 1
Team: Scott Eberhardt FI Karl Rowley
Problem Overview. The computation under study is the Conservative

Supra-Characteristic Method (CSCM) for numerically solving the equations of
fluid motion: the Savier-Stokes equations for viscous fluids, or the Euler equa-
tions if viscosity is neglected. The author concentrated on the one-dimensional
model. but developed strategies for programming the three dimensional model.

Mathemat ica l Model. The model used for this study is the time-accurate
Euler equations. These equations describe the conservation of mass, momentum,
and energy. For the one dimensional case, they are

aq aF -+-=o
at az

where

and

p = (7-1) [E -4 1

The elements of the vector q are called the conservative variables and the vector
F is the flus vector. The variables are p= density. u = velocity, e = total energy
per unit volume, and p = pressure.

Abs t rac t Algori thm and Approach . The detailed analysis and develop-
ment of the algorithm to solve for the conservative variables in the above equa-
tion is too complicated for inclusion in this report. The interested reader is
referred to [Eber85].

Many CFD algorithms use finite differencing, where partial derivatives are
represented by finite differences. The domain is first broken into a discrete sys-
tem and differences are computed between the discrete points. Most algorithms

- 18-

for solving the Euler equations are implicit, and hence represent the solution at
each point in the system as a function of other points in the system. Therefore,
the solution procedure will involve the inversion of matrices which are usually
block tridiagonal. scalar tridiagonal. scalar penradiagonal. or. occasionally. block
bidiagonal. The block matrices result from the system of equations so that the
one dimensional problem. with three equations. produces 3 x 3 blocks. The Euler
equations basically represent a convection process while the Navier-Stokes equa-
tions also include a diffusive process. The convection part of the two equation
sets give rise to a wave property which can be exploited in the algorithm. CSCM
decouples the system of equations into three wave equations and combines posi-
tive waves together in one set of equations and negative waves in another set.
The equations are then finite-differenced in such a way as to capture the correct
wave propagation direction. The equations are then recombined to form the
complete system.

The resulting algorithm used in CSCM is written as follows:

where

1
A z f =- A+ (f j - f j - 1)

When taken out of operator form, the lefthand side becomes

or

- A (Aq) Aq) 3ni1+C(Aq) In-:'

The indices j and n represent spatial and time discretization, respectively. Each
step of the algorithm computes a new Aqj ; this being used to compute the new
values of the conservative variables at each grid point j .

The matrix A transforms the conservative into the right- and left-running
waves. hence the existence of A + and A -.

When extended to multiple dimensions, the dimensions are decoupled to
look like multiple one dimensional problems.

The Program. The overall structure of the program is shown in Figure 3.
There are two ways in which the one-dimensional CSCM code can be imple-

mented. The example code is small and so will not utilize the full machine in
either implementation but the analysis will lead to a more clear picture of the
multi-dimensional problems which will be covered later. The first method is to

- 19-

I 1

Initial-
ization - - Fill block Block output

elements - matrix Tridiagonal
Solver

I

J
I

A. B, C, F

Figure 3. Structure of CSCM Data Flow Program.

- resid =zag2

pipeline the code on a single processing element (or through a few processing ele-
ments), leaving all other processors idle. The total number of operations
required for the multi-dimensional CSCM code is greater than the instruction
cell memory will allow so more than one processor must be utilized for the pipe-
line chain. There are two pipelines in the 1-D code represented by the block
which fills the block tridiagonal elements and the block tridiagonal inversion rou-
tine. The scientist concentrated on the filling part because a previous study
examined the matrix inversion block. Analysis showed that the pipeline length
for this step is 368 floating point operations. exceeding the required 250 opera-
tions to keep the pipe busy. Hence, the one-dimensional code can adequately
keep one processing element busy. The other technique for solving the one-
dimensional case is to spread the computation over all 256 processors. However,
rarely is the one-dimensional case computed for so many grid points and the
interprocess communication would overload the routing network.

For the multidimensional case, the grid space is broken into “pencils,”
where each pencil is a one-dimensional cut or line where all coordinate values
except one stay constant. The method of approximate factorization was used to
decouple coordinate operators into pencils. A four step process is used to obtain
Aq . The first is to compute the right-hand side operator which is a function of
known variables. The next three steps are to compute the block tridiagonal ele-
ments and invert the block tridiagonal matrices for each of the three coordinate
directions. The relation to the one-dimensional problem results from these three
sweeps.

Conclusions. As this algorithm is very similar to the one used by the MIT
team during the early design phases of the machine, it maps well onto the static
data flow architecture. It is estimated that a sustained performance of 1
GFLOP is achievable. Shortcomings in the architecture include the small
instruction storage. If the program were modified to allow each PE to process

- ao -

an entire X-Y plane, the array memory requirements for the plane alone would
expand to 150K words.

6.2. Computational Fluid Dynamics - 2
Team: Marshall Merriam

Problem Overview. A multigrid Euler equation formulation for compu-
tational fluid dynamics (CFD) is a simplified model of fluid flow, neglecting
viscous effects. but one that is commonly used in the aerospace field and of great
importance. For the data flow study a multigrid solver for Euler equations
(FL052R) was examined to determine its performance on the proposed MIT
static data flow computer. This code is competitive with the fastest Euler
solvers available for the Cray X-MP and is widely used in industry. For a
detailed report of this team's study. see [Merr85].

Abstract Algorithm and Approach. The program FL032R was used as
the starting point for the study. Although it is explicit for the most part, there
is a small implicit section to do smoothing on the residuals. The scientist
quickly concluded that the code in its existing state was a bad match to the
architecture. First. the code contains a subroutine which solves a number of
scalar tridiagonals in each spatial direction. This results directly in limited
parallelism due to a data dependency of the first-order recurrence type. Second,
a significant part of the algorithm involves solutions of the Euler equations on
coarse grids. Since parallelism is limited by the number of mesh points, even the
explicit portion of the code becomes a potential bottleneck. Additionally, mul-
tigrid codes are more readable if they employ recursion when changing grid
meshes, but recursion is disallowed in VAL.

FL052R utilizes a full multigrid sawtooth cycle, solving the equations on an
initial grid, restricting the grid to a coarser grid, solving again, interpolating
back to the finer grid and solving once more. This cycle repeats. employing an
increasingly wider range of grids. In particular, FL052R cycles between 32x8
and 64x16 point grids 40 times, then between 32x8, 64x16, and 128x32 point
grids 40 times, then four grids (adding a 256x64 grid) 400 times.

The Program. For this study. FL052R was viewed as one pipeline, many
instructions long and many instructions wide. The scientist did not perform a
complete coding of the application, but rather focussed on some of the key parts
of the computation. The remainer of this subsection displays one such key part.
The interested reader is referred to the longer report [Merr85] for more detail on
this and other portions of the computation.

As an example of how an explicit portion of the code might be programmed,
Figure 4 shows the FORTRAN code and corresponding data flow graph for the
second order smoothing subroutine. For clarity, the loop for only one direction,
one variable, and one row of data is shown. In practice all four variables, both
directions, and 64 rows of data could be executing simultaneously with a

- 21-

SUBROUTINE FILTC(I2.W.P.VOL DTL)
C FOUR EQUATION MODEL
C SECOND DIFFERENCES WITH FIXED COEFFICIENT

COMMON /C/ IL IJ
COMMON / E / VIS0
COMMON /FIL/ FW(257.65). RFlL
DIMENSION W(12 1) . P(l2.1). VOL(12.1). DTL(12.1)
DIMENSION FS4(257)

FlSO = VISO/32

DO 20 J=2. JL
DO 10 I=1. IL

FIL = FlSO * (VOL (1+1. J) / DTL(1+1, J) +VOL(I . J) / DTL(I. J))
FS4(I) = FIL * (W(1+1 .J)-W(I.J)+P(1+1 .J)-P(1.J))

10 CONTINUE
DO 20 I=2.IL

FW(1.J) = (1. - RFIL)*FW(I,J)+RFIL*FS4(l-l)-FS4(1))
20 CONTINUE

RETURN
END

FW mt- X FW

Figure 4. FORTRAN Code and Data Flow Graph, Explicit Smoothing

transpose between the two directions. The boxes labeled “ID” are “identity”
instructions and are used, for example, in the second row of the data flow graph
to implement the W(I+l.J)-W(1.J) expression.

- 22 -

In the figure, the input data are shown on the left. They arrive as an
ordered stream with W(1) arriving before W(2) which arrives before W(3).
Xotice how the averaging and difference operators are implemented by taking
inputs from different points in the input stream. The output. FW. appears as an
ordered stream on the right.

Other sections of the longer report discuss the handling of boundary condi-
tions. transposes. and the implicit second order smoothing of the residuals.

Conclusions. Several assumptions were made concerning performance of
the machine and the nature of the activity that would occur during the course of
the calculation. One was that all network traffic consists of floating point data
traveling between subroutines. It was found that for the FL052R code there
were three bottlenecks that prevent effective use of all 256 PES in the proposed
architecture despite the explicit algorithm used. The network used must be able
to support matrix transposition if performance is not to suffer. In spite of this,
performance levels approaching that of a Cray-1 may be possible for a computer
costing far less.

The problems with the data flow machine are its tiny scalar speed, need for
massive temporary storage. prohibition of recursion. and lack of debugging sup-
port.

6.3. Computational Chemistry
Team: Harry Partridge d Gene Levin

Problem Overview. In quantum chemistry we determine the properties
of atoms and molecules from first principles by solving the time independent
Schrodinger equation. The solution algorithm we employ involves a double basis
set expansion of the wave function 9 using a variational principle or a perturba-
tion expansion to optimize the parameters. The quantum chemistry techniques
are capable of providing accurate atomic and molecular properties such as molec-
ular geometries, dissociation energies and transition probabilities. The calcu-
lated properties both complement and supplement the available experimental
data. In addition, the results can provide qualitative insight of chemical
phenomena. The steps selected for study in the workshop were chosen to reflect
both the computationally intensive kernels and data manipulation requirements
of our applications.

Mathematical Model. The solution involves a range of techniques includ-
ing massive table look-up for integral values and extensive matrix calculations.

Abstract Algorithm and Approach. The algorithms studied are:
Sparse Matrix Vector Product: The product of a large randomly sparse
symmetric matrix times a set of vectors occurs in many applications. In
computational chemistry it occurs in constructing the Fock matrix in Self
Consistent Field (SCF) calculations, in solving linear equations, and in solv-
ing for the lowest few eigenvalues and eigenvectors.

A.

- 2s -

B. Four Index Transformation: The four index transformation is needed to
transform the two electron integral file (a function of four variables,
F(ii,k,l), with respect to a different basis set.

C.

The transformation algorithm involves the formation of partial sums to
reduce the computational complexity but it requires a significant shuffling
(reordering of the partially transformed integrals) half-way through the cal-
culation to keep the memory references local. To obtain efficient vectoriza-
tion it is necessary to treat molecular symmetry explicitly, which essentially
blocks the function F into relatively dense subunits.
Diatomic Slater 2-electron Integrals: The numerical evaluation of O(n),
where n=100-300. diatomic exponential (Slater) type orbital two-electron
integrals. The algorithm uses the Keumann expansion for r,;’ and each
term in the expansion involves an iterated double numerical integration.
The integrals are required to have a high degree of (absolute) accuracy-
typically < lO-”--to avoid numerical linear dependency problems. A charge
distribution approach is implemented. For each term in the expansion the
set of n charge distributions(CD) are calculated and all possible vector dot
products (length O(SO0)) are formed. Given sufficient memory to hold all
of the charge distribution quantities the CPU time is dominated by the dot
products.

4

2

The Program. A . The sparse matrix vector algorithm for symmetric
matrices is complicated slightly (relative to the nonsymmetric case) by the fact
that each element H.. contributes to both Di and D j . 1/0 and memory concerns
still strongly suggest that the symmetric form of H be explicitly utilized. One
implementation requires each processor to have access to all of C with each pro-
cessor forming a partial result Dp. When all of the records of H have been pro-
cessed the product D is calculated as

1J

The algorithm is easily distributed over the PES where each PE stores a portion
of H in its array memory. The corresponding partial sum Dp is computed by
importing the needed elements of the vectors C. Depending upon the size and
sparsity of the matrix of the matrix, each PE will need only part of the elements
of C. For the n=20000, 1% nonzero test case, each PE will require about 3/4 of
the the elements of C. The rate limiting step of this implementation is therefore
the network transfer time to transmit C and Dp. For the above example the 1/0
time would be about 0.16 seconds while the total CPU time would be only 0.01
sec. The total execution time is thus 0.17 seconds.

Another implementation has each PE store about m=n/256 elements of C
and of D. The matrix is then divided (sorted) into M*(M+1)/2 subblocks each
spanning approximately an equal number of rows and columns (m) with each

subblock allocated to a PE (M=22 square subblock would allocate one block to
253 of the PES). Each PE would then require no more than 2m elements of C
and would calculate no more than 2m elements of Dp. Furthermore, each ele-
ment of D could be summed requiring no more than L4 elements of Dp. Thus.
the number of words to be transferred over the network for each PE is m(M+2).
For our sample problem. m=i9 and M=22: the network transfer time is less than
0.01 seconds.
B: The four index transformation. If we define the n, by nl matrices F k‘ as the
corresponding subunits of F then the first half transform may be expressed as a
sequence of similarity transforms, H k’ = C F C . If we shuflle the elements of
H to form H ’ with Hkl’l1=Hl:. then G may be formed as another sequence of
similarity transforms. The algorithm is thus broken into the following steps:
1. The expand step to form the matrices. Fk‘ . Only the elements of F greater

than some threshold are usually stored on disk. In addition. for many of
the symmetry blocks of F there are restrictions on the range of the indices
since only the unique integrals are stored.

First half transform. denoted as MXM1.
Sort or shuffle step to reorder the partially transformed integrals. Since the
integral file does not fit into memory, random access is used to perform a
bin sort.

Second half transform. denoted as MXM2.

2.

3.

4.

The algorithm transfers trivially to a multiprocessor environment because each
of the O(n *) similarity transforms can be performed independently. Assuming
the integral file will fit in memory then this algorithm will perform well on the
data flow machine. The shuffling required between half transform steps will not
dominate the calculation.
C. Two electron diatomic Slater integrals. There are many organizations possi-
ble for implementing this algorithm on multiprocessors. Since any number of the
O (n 4) integrals may be computed independently, the simplest approach is to
partition the integral list and have each processor work on separate partitions.
If we define the speedup in performance for n processors to be the ratio of the
performance of n processors to that of one processor. then the speedup for this
implementation is n since each of the partitions is independent. The implemen-
tation could be rather inefficient, however. since most of the CD quantities will
need to be recomputed many times. We can divide the O (n 2) CD quantities
among the PES (m per PE) and partition the integral file into subblocks. Each
processor would need at most 2m CD quantities, and each would compute
O(m ’) integrals. Also, each PE would need to only import the CD quantity itself
and not the associated tables needed to form the CD quantity. This implemen-
tation is thus expected to perform very well, close to the 1.2 GFLOPS limit,
without requiring considerable redundant calculations.

- 2s -

Conclusions. In conclusion, computational chemistry codes can perform
well on the static data flow machine [Levi85]. There is a considerable degree of
parallelism in the algorithms that can be easily exploited. Considerable algo-
rithmic development will be required for some steps (notably the
multiconfiguration self consistent (MCSCF) and configuration int.eraction (CI)
steps) to reduce the network traffic.

The scientists found coding in 1-AL straightforward but expressed a number
of reservations about the programming environment. They also felt that the
compiler directive (advice file directives) to effectively map the problem onto the
data flow machine might be nearly as hard to write as the VAL program itself.

For the particular machine proposed to the data flow study, disk 1/0 is
significantly underdesigned for chemistry algorithms. The total disk 1/0 rate is
little more than that of a single channel on a Cray and is far less than of the
Cray Solid State Disk rate (1.2 GByte per second). The work done for this
application assumed that there would be a large buffer memory to synchronize
1/0 and to allow simultaneous read of sequential records (to different PES) from
a file possibly scattered over many disks.

Some of the chemistry algorithms will not fit in the assumed instruction
niemorp size. The analysis was not carried out to sufficient detail, however, to
provide a realistic estimate of the instruction memory space required.

6.4. Galactic Simulation
Team: Eric Barszcz t? Cathy Schulbach

Problem Overview. The problem is to simulate the movement of parti-
cles, i.e. stars, in a galaxy. Typically, an entire galaxy is simulated. Inputs to
the simulation are the initial particle positions and their velocity vectors. There
may be more than 100,000 particles. Currently, this code runs on a Cray X-
MP/22 and the particle pusher phase takes approximately 0.7 seconds per itera-
tion.

Mathemat ica l Model. A discrete simulation is used. At each time step,
the change in particle position is computed based the current position and the
surrounding potentials. Ideally, the change is computed a t the finest granular-
ity, that is, the effect of every other particle on the current particle.

Abs t rac t Algori thm and Approach. Because of the size of the problem,
the ideal solution is not feasible. Instead, break the galaxy into a grid and com-
pute the average potential a t each grid point. Use a 6 4 x 6 4 ~ 6 4 grid.

The computation has two phases. First, the potential grid is computed
based on the density grid. Second, the particle positions are updated based on
both current position and the force on a given particle from the 26 nearest
potential grid points. The new position information is then used to compute a
new density grid which is used in the next iteration of the computation.

- 26 -

The. team rejected transliterating the program from FORTRAN into VAL
because the algorithm was not evident in the program. Instead, the team
started with the algorithm as specified above. but also questioned this choice in
their report. noting that the algorithm may have been chosen because it was
easy to implement in FORTRAN. Furthermore. because of the size of the prob-
lem, the team chose to implement only the second half of the algorithm. called
the particle pusher. on the data flow machine. The estimated run-time for the
particle pusher on the data flow machine were compared to the 0. i second one-
pass time on a Cray S-MP.

The team chose to store the potential grid data in the local memory of the
PES and then stream the particle data past such that for each particle. The new
position computation is performed as soon as its neighborhood is available. The
potential grid is too large to fit in the local memory of any one PE. so it must be
divided up and placed in more than one PE. The scientists developed an algo-
rithm to determine the effective computation rate based on different dividing
schemes.

The final program developed divided the potential grid
into 4 x 4 ~ 4 cubes with boundary layers. Each cube is stored in a separate PE.
Then. assuming the particle arrays are presorted. each PE reads only a section of
the particle memory. Using this approach, and summing the times to read the
particle data, to drain the pipe afterwards, and to bring the results together
yields 0.0516 seconds per iteration.

The team then examined the case where the grid size was changed to twice
the resolution and the number of particles increased to one million and com-
puted 0.289 seconds per step, or a computational rate of 1.17 GFLOPS.

Conclusions. The particle pusher phase of the galactic simulation adapts
well to the MIT static data flow architecture. Array storage is not a serious
problem, but since this is only one part of the whole galactic simulation pro-
gram. the number of PES and program storage may be too small to hold the
entire program.

The Program.

6.5. Linear Systems
Team: Merrell Patr ick

Problem Overview. Sparse linear systems of algebraic equations fre-
quently arise from the numerical approximation of mathematical models used,
e.g., in structural analysis, fluid dynamics, and circuit analysis. As the models
become more sophisticated and their numerical approximations become more
accurate, the linear systems to be solved become very large and quite sparse.
Such systems are usually solved using iterative methods (Reed841.

For this study, then, we consider the general problem of solving the linear
algebraic system

.

- 37 -

K z - = f

iteratively using the iteration defined by
f (k + l) = A * ~ (~ 1 + c

where x (k ~ (~ 1 , and c are vectors with n components and .4 is an n x n
matrix whose elements are functions of the elements of K . The matrix A is
assumed to be random sparse with r percent of its elements nonzero.

Abstract Algorithm and Approach. The "divide and conquer" para-
digm for developing parallel algorithms was used to define two different
approaches.

In the first approach the iteration matrix, A , and the constant vector, c ,
were partitioned into sets A [i] and c [i 1, respectively, of n /256 contiguous rows
for i = 1, ..., 256. A [i] , e [i] . and a copy of the iteration vector P (~) were
assigned to the array memory of PE i . P E i . concurrently with all other PE's,
evaluated the expression A [i] z (k + c [i] to produce components
(i - 1) . /256+1 to in /256 of the new iteration vector z (k +'I.

In the second approach, A and c were partitioned and assigned to PE i
as above. In addition. the set A [i] in the array memory of PE i was then par-
titioned into sets A [i , j] of n /256 contiguous columns for j = 1, ..., 256. In
other words. .4 [i , j] was a block of n /256 rows and n /256 columns of the ori-
ginal matrix, A . PE i then carried about a computation of the form

for j in [1,256]

endfor

z (k + I) = 0

; r (k + l) [i 1 = z (k +l)[i 1 + A [i 1 * z(')[i 1

However, the algorithm is implemented so that PE i finishes its computation
after PE i -1, but before PE i +1. The motivation for this and other details of
the programs for the two approaches is discussed in the next section.

The Program. The program for the first approach was written so that the
PES carried out their computation concurrently. Since each PE owned a copy of
the iteration vector. before it could continue with the next iteration it had to
send the new components it computed to all other PES and, in turn, receive new
components of the iteration vector from all other PES. This organization of the
algorithm meant a large amount of data had to be communicated amongst PES
between each iteration step and offered the potential for the communication net-
work to become a bottleneck. This potential problem motivated the second
approach.

In the program for the second approach, only PE 1 owns a copy of the com-
plete iteration vector z (~) . The computation in PE i proceeds as follows a t a
given time step:

if i not equal 1 or 256 then

PE i reads z (k +l)[i] from its array memory
after it has been received from PE i-1

PE i multiplies A[ij] and z (k) [j] and

PE i forwards ~ (~) [j] to array memory of PE i+l
if j = 236 then PE i adds c[i] to the accumulated sum

adds it to the accumulating sum

yielding r (k - *) [j] and sends it to the
array memory of PE 1 where it becomes the new
z (') [j]

This shows that at a given time within an iteration, PE i only owns n /256
components of the iteration vector rather then all n components. Furthermore,
the communication of the iteration vector amongst PES is spread out over the
time required for an iteration rather than waiting until the end of an iteration.
This implementation also allows for the possibility of overlapping the communi-
cation of data amongst PES with the computation. These two things together
reduces the possibility that communication will become a bottleneck. It is also
important that synchronization required for checking for convergence of the
iteration can be handled more smoothly in the second approach.

Conclusions. The above programs were mapped onto the machine assum-
ing problem parameters of n (number of equations) = 40,000 and
r (sparsity) = .04. These assumptions mean there were 64M nonzero elements of
A requiring 128M floating point operations per iteration. Since the A matrix
was assumed to be stored in sparse form 80M words of storage were required.
We assumed that the combined memory of the 256 processors were sufficient to
satisfy these storage requirements.

A first pass analysis based on floating point operation counts, processor
speeds, array memory access times, and interprocessor network capacity indi-
cated that the parallel execution time of the program for the first approach was
roughly twice that for the program implementing the second approach. This
analysis assumed communication between a PE and its array memory could be
overlapped and that the logical functional units in the machine would be able to
keep the floating units busy.

A more careful analysis of the data flow graph from which the first program
was developed and the number of logical operations required to feed the floating
point units showed that performance of the machine was sensitive to the number
of logic units. Three to four logic units were needed in order that logical arith-
metic not become the bottleneck in the computation. The analysis also clearly
indicated that the performance of the machine was affected by the array memory
access method used by the machine. In particular, random access of data from
the array memories was far superior to sequentially streaming data from the
memories through the functional units. Our analysis did not indicate that inter-
processor communication would be a bottleneck as we had earlier feared.
Details of this analysis can be found in [Reed85a, Reed85bI. A careful analysis

- 29-

of the data flow graph from which the program for the second approach was
written is in progress.

Based on the results we have so far, we believe that with careful design of
the functional units and attention to memory access patterns. iterative methods
for solving large sparse linear systems of equations can be implemented efficiently
on a static data flow machine.

NLU 3 Thinker

6.6. Artificial Intelligence: Natural Language Processing
Team: Rick Briggs
Problem Overview. A natural language processor is a system that can

understand and intelligently respond to natural language input. For this prob-
lem, solution techniques. algorithm designs, and performance statistics are under
active research and final results are unavailable. For an overview of the topic,
see (Bobr751.

Abstract Algorithm and Approach. Natural Language Processing
(SLP j can be viewed as a three-part process: understanding. intelligence, and
expression. Figure 5 gives the overall structure: Katural language comes in

. - Expresser

Natural
Language

Natural
Language
Answer

t

Dictionary

Figure 5. Structure of Natural Language Processor

(either query or text) and the NLU (Satural Language Understander) deter-
mines the real meaning of the input, including all semantic nuances not explicitly
stated. This is done by consulting:

1.

2.

Syntactic information. a relatively small database.

Semantic knowledge. the true "knowledge base" of the system in which is
stored knowledge of the world to aid in understanding; can be enormous.

3. Dictionary, the English lexicon matched to meanings in representation:
there should be at least 100.000 entries with 1 million being more realistic.
Each of these entries can contain complicated structures.
For the purposes of this study. only the Natural Language Understanding

(NLU) portion was used. A more detailed diagram of its structure is given in
Figure 6. Further information on the processing of natural language can be
found in iBobr80. BruciS. Ries74, Scha741.

A series of searches are necessary to find the appropriate semantic struc-
tures and syntactic information of the input. The remaining parts of the compu-
tation involve the expansion and filling of "templates," or "cases." where each
template has slots to be filled either with primitives, or other semantic tokens
that need to further be expanded.

Either text comes from a
human directly or the NLP is hooked up to, say, a news wire and is receiving
input over time. as in [Cu1178]. In the first case, the processing of different con-
text blocks should be spread out in space, whereas in the last, pipelining is more
appropriate.

The Program. A portion of this application was written in Prolog, and
was then used for the translation to VAL.

The steps at the top of Figure 6 to find the appropriate semantic structures
and extract the syntactic information from the input are first performed sequen-
tially. This step can be performed rapidly using standard sequential methods; it
was not encoded in parallel. The main computation of the program, called "gen-
erate," takes the form of a forall definition of an array. called "case-array" in
the program, in which there are embedded forall loops for instantiating primi-
tives. The cases are templates with holes that require further instantiation with
cases (hence the loop on the .*Instantiare Case" box in Figure 6) or have holes to
be filled with words in the lexicon.

The trimming step would allow each slot to be processed in parallel by
allowing multiple candidates to fill the slots according to only semantic con-
siderations. Later, to select the correct instantiation, syntactic information can
be used to "trim." Note that backtracking sequentially, which will be slower,
would allow one to fill in the correct slot immediately by examining the other
slots, since in this case processing is not done in parallel (although backtracking
can be simulated to some extent using a queue).

For text analysis there are two possibilities.

- 31 -

Natural (Dictionary] [Primitives)

Trim * Paraphrase

I I I many in parallel

Instantiate
Primitive

‘T Candidates

JI
Natural

Language

Figure 6. Structure of the AI VAL Program

. Finally, these bindings are mapped onto a template and output in a para-
phrased (understood) form.

- 32 -

1.

2.

3.

4.

Conclusions.
The lack of global databases in the data flow machine was a serious prob-
lem.
Overcoming sequential thought patterns so familiar in LISP and Prolog is
not easy but is ultimately necessary if AI applications of significantly higher
performance are to be achieved.
The lack of function libraries, debuggers, and other tools (as in InterLISP)
is a problem at least in getting AI programmers to accept parallel machines.
The inability to perform 1/0 at the normal level encountered in (say) Inter-
LISP was a problem.
L-AL and data flow were less of a problem than the lack of normal libraries,

databases. and software tools -- all heavily used in AI applications. The scientist
concludes his own report with

On the positive side. it is a good exercise to think in the way necessary to pro-
gram in I'AL. Almost everybody who has done programming is very used to
sequential thinking. .4nd apart from lack of shared memory, the new way of
thinking is superior to the old with respect. to .41 applications for reasons men-
tioned above.

6.7. Queueing Network Analysis
Team: Ken Sevcik d Peter Denning
Problem Overview. Queueing Network Models are tools for deriving per-

formance estimates for computer systems and communications networks
[Denn78]. From descriptions of workload intensities (the volume of transactions
or messages) and service demands (the service required on average at each sys-
tem device. or center by a work unit). performance measures such as throughput,
average response time, utilization, and average queue lengths can be computed.

Exact solution of a queueing network model can, in general, be obtained
from the solution of a system of simultaneous linear equations in which the
equilibrium state probabilities are the unknowns. This approach is practical
only for networks with very few classes, few devices, and few customers per class.
With two classes, five devices, and ten customers per class. the number of equa-
tions exceeds one million. For example. using mean value analysis (MVA)
[Reis80]. the throughput and average response time of a single-class queueing
network model with N customers and service demands, D,, D2, ..., DK at the
K centers is given by:

Throughput : X (N) = N / R (N) ;
K

1 =1
Mean Response Time : R (N)= R, (N)

- 33 -

1 where Ri (N) =Dt (1V -1)
R (N - 1)

Fortunately. queueing network models t h a t satisfy restrictions leading to
the property of separalrility [Lazo84] can be solved efficiently. Techniques are
known for obtaining performance estimates directly, rather than by summing
state probabilities over subsets of system states. For one such technique. called
convolution or notmaliaatiori constant unalysis (NCA) IBuze73, Reis75)

Throughput : X (S) = G (X - l) / G (N) ;

(2)
G (A’

Mean Response Time : R (N) = N 1
G (lV -1)

where G (-4’) = g (N , K) and g (n , k) = g (n .k - 1) + Dk x g (n - 1 . k) with
g (0 . k) = 1. k = 0,1.2. K. and g (n .O) = 0, n = 1.2. ..., S . This expression
for G (X) is efficient for calculating the normalization constant that assures
that state probabilities sum to one. and is defined by

For large multiple-class queueing network models, exact solution even by
MV.4 or SC.4 can become computationally intractable. The number of opera-
tions required by both MVA and NCA performed recursively (NCR, using
g (n ,k)) is approximately 4 K m (N , +1) , where C is the number of classes, and

N , is the number of customers in class i .
Abstract Algorithm and Approach. The team considered three

methods of obtaining exact solutions. The first was the MVA recursion (Eqns.
(l)) , while the others used a normalization constant computed either recursively
(NCR) or directly (NCD with Eqn. (3)) , and then using Eqn. (2) to obtain the
performance measures.

Performance Tables 2 and 3 summarize the results. Space and operations
required for algorithm execution on sequential architectures are given. For data
flow architectures, estimates of t h e number of operator nodes in the full data
flow diagram are given along with the number of time steps required under three
successively more realistic assumptions:

1. an unlimited number of PES and unlimited fan-in and fan-out at each
operator (“ideal” case),

2. an unlimited number of PES, but operator fan-in and fan-out two or less,

3. only 256 PES with operator fan-in and fan-out two or less.
For more discussion and justification of the table entries see [Sevc85].

1

- 34-

~

Table 2. Approximate Computational Costs for a Single Class.

/ / 1 '

h.I v A NCR NCD

operations 4 sh-
space m i n (S . K)

DATA FLOW

MVA I NCR NCD

operators
ideal

Z-wa? fan

256 PES

2'\h' K 2V-L
2 -1' - K -2 2
2 . V - K - 2 -v -logz(K L)

i 1 31VK

I 5'v I -V 'J-logzh'
3 .VK 2 SA- A- -\- - L L - -
256 256 256

if min(N ,K)>256 if h' >256 if L >256

N + K - 1
L ; (N I

Single Class Case. MVA and NCR are usually thought to have sirnilat
computational cost on sequential machines, so the difference between NCR
(0 (N K)) and MVA (0 (N log,K)) with limited fan-in and fan-out is interesting.
NCR effectively treats all customer population levels in parallel; MVA sums
residence times over all centers for population levels separately. For NCD, the
products over h' devices require log&' time steps. and the summation over all
feasible states requires log& time steps. Because log& (essentially log,(N !))
grows much faster than N . NCD is uninteresting for models of realistic size (Le.,
N 2 4 and K 2 4) . A sum over the massive number of system states requires so
many steps when fan-in is restricted that the gain of parallelism elsewhere with
NCD is more than offset. Note that XCD is the most highly parallel of the three
algorithms, yet given limited fan-in and fan-out it leads to less efficient parallel
code, even for quite small models.

In practice. all useful single-class models are such that 4NK < io7, and they
can be solved interactively on conventional machines.

Multiple Class Models. With fan-in of two, NCR is again better than
MVA (assuming E N , exceeds K) because it avoids recursion over customer

population levels. NCD remains acceptable (even preferable!) for slightly larger
c

- 35 -

Table 3. Approximate Computat ional Cost for Multiple Classes.

operations

space

~

operators

ideal

%way fan

256 PES

11 \' A I NCR I NCD

f C

11 \' A

S C h - n (. V , - 1)
C

6 'Ye
C

256

if ENc >8
C

D.4T.4 FLOW

NCR

CKH(.V, - 1)
C

2K

K (log,C +Elogz(Nc + I)]
C

C K n (N c il)
C

if > 2 5 6
N m.x

Ni +K - 1 ' = n (i =1 N i

NCD

K LC + E N c I
2

maxN, +log2(CKL)

K LC +En., (1
256

if L >256

models than in the single class case, because the more classes there are, the
longer L stays small relative to n(Nc + I) .

f

,411 models so large that they cannot easily be solved interactively on
sequential architectures have enough parallelism that their solution on a data
flow architecture is constrained only by the number and speed of the PES
(assuming a compiler effective at balancing PE workload). The total number of
operations required depends on the number of devices, classes, and customers per
class. The number of devices is a multiplicative factor, so with a 1000-fold com-
putational speedup, models with 1000 times as many centers can be solved. The
number of classes and customers per class affect required operations exponen-
tially. Consequently, only much smaller changes in the number of classes (unless
class populations are very small) or in the number of customers per class (unless

the number of classes is very small) can be supported by 1000-fold speedup.
Thus, practically, it is not clear that data flow architectures will significantly
assist solution of queueing network models.

1.

2.

3.

4.

5 .

Conchisions.
Practical space and parameterization limits restrict the size of useful single-
class models to those that can be solved interactively by MI’A or SCR on
sequential machines.
MVA or XCR algorithms on data flow machines would make it possible to
solve multiple-class models with a few more classes, or with somewhat larger
class populations.
The most parallel abstract algorithm (IL’CD) did not lead to eficient paral-
lel code due to fan-in/fan-out restrict ions.

While models can be larger (more classes. larger populations), the difficulty
of generating parameters means that useful models will not grow

This work focussed on “exact” solutions of queueing network models. If
close approximate solutions are acceptable (they usually are: model parame-
ters are seldom known precisely). then use of approximate algorithms
1Schwi9. Chan821. which have computational costs independent of class
populations (such as o (h’c) or 0 KC^)), is appropriate. These algorithms
execute acceptably on today’s sequential computers.

significant 1y. . -

- 37 -

7. What We Learned: Comments from the MIT Group
The RIACS Data Flow Evaluation Study has been an important contribu-

tion to the evolution of the MIT Static Architecture into a machine design that
can be successfully applied. The study confirmed that data flow machines can
achieve high performance in important practical problems. and that the pro-
gramming methods and concepts necessary to make effective use of them are
readily accessible to scientists experienced in the application of conventional high
performance machines. The study augments and reinforces program analysis
studies that have been conducted on five applications at MIT [Denn84a], but
without the guidance of experts in the application fields.

Users of the study report should understand that the machine configuration
specified for the study was chosen only to provide a specific target for evaluation.
Indeed. one advantage of data flow architecture is that the number of processors
and memory units may be chosen to fit users' needs. We imagine that machines
with 16. 64. and 256 PES might be found well matched to various problem
domains. For example. the multi-grid CFD computation appears well matched
to a data flow machine with 16 PES. Furthermore, the size and transfer rates
for the array memory and disk storage can be adjusted without making funda-
mental changes to the architecture. In fact the objective of chosing a specific
configuration for the study was to determine which parameters of the design
were limiting applicability of the machine.

We were gratified that the teams found our programming language VAL
easy to learn, and that, by the beginning of the second week, they were in good
command of the issues involved in structuring machine code for high perfor-
mance on the data flow machine.

Several comments made by the teams merit a response; these deal with the
specified machine configuration, provisions for program debugging, the applica-
bility of array memory to global data bases and matrix transposition, and the
applicability of VAL and static data flow computation to artificial intelligence
problems.

7.1. The Machine Configuration
From several of the teams we learned that the capacity and transfer rates

specified for the array memory and disk system5 of the machine were limiting the
performance achievable for their applications. Some problems can benefit
significantly from large amounts of array memory at each PE. Since the time of
the study we have found it desirable and practical to provide for much larger
array memory capacity (several million words or more for each PE), and a
transfer capability of 5 million (64-bit) words per second for each PE. We also
learned that disk storage transfers through the routing network would be a
bottleneck in applications involving very large amounts of data. In response, we
are now planning that communication with disks will be supported by direct con-
nections between PES and disk control units, each connection supporting 5

- 38-

million words per second or more for one PE.

7.2. Program Debugging
Considerable concern was expressed by team members about the debugging

of I*AL programs. specifically the difficulty of requesting output of internal vari-
ables. arguments. and results of functions invoked during program execution. In
the lectures at RIACS. we did not cover the program tracing facilities of VAL-
Sys. and are not sure to what extent the teams made use of these facilities. An
important facility not provided by YALSys is the ability to “break” execution of
of a data flow program at an arbitrary point (a variable definition, say). This is
a feature that could be added to the V.4L interpreter, and one that will be sup-
ported for compiled programs by a simple hardware feature that will permit
insertion of “breakpoints“ into data flow machine code. The PE will be designed
so any instruction it holds may be altered so that. after its execution. it sends an
information packet to the host computer instead of signaling its successor
instructions. Following analysis of the computation state by a debugger pro-
gram (all information on which the breakpoint instruction depended will be
static), the debugger can cause the host to send a command to the PE that
causes the breakpoint instruction to signal its successors. Of course implementa-
tion of the debugger requires information from the compiler about the relation-
ship of variable names in the VAL program to the locations in the machine of
the data values and the data flow instructions that produce them. The ability
to provide this information will be an important feature of the compiler.

7.3. Array Memory
The Artificial Intelligence team criticizes the absence of “global memory” as

making access of a global data base of stored knowledge difficult. The Computa-
tional Chemistry team criticizes the absence of “shared memory” in view of the
importance of support for transposing multi-dimensional matrices and argues
that special hardware should be provided for this purpose. Both of these
remarks concern problems that affect any highly parallel machine. One is the
problem of distributing a large data base over many processing nodes. Either all
requests to access the data base must pass through a single “monitor” or *‘guar-
dian” of the data base. or the data base must be divided up in some way that
permits accesses to different sections to be handled by several monitors. The
techniques that have been proposed to implement either strategy are as usable in
data flow computers as in other forms of distributed computer organization. We
believe proper attention to hardware support can make data flow machines more
attractive than other parallel architectures for such applications.

The transposition of matrices is a classical hard problem for parallel com-
puters. Its efficient support does not depend so much on “shared memory”
specifically as it does on efficient communication among processors. The ability
of the proposed data flow machine to do matrix transposition could be improved
by increasing the capacity of the routing network. This is planned in any case,

- 39-

since we have found that the amount of hardware in the specified routing net-
work is small in comparison with the hardware used to build the PES. However,
a large increase in performance for matrix transposition does not appear war-
ranted because in most cases where transposition is used some computation can
be overlapped with data movement operations.

7.4. Applicability to AI Problems
Skepticism over the applicability of Y A L and the static data flow architec-

ture to artificial intelligence applications is understandable since our efforts on
data flow computation have been directed specifically at supporting “scientific”
computation. Actually, many workers in the field have argued that artificial
intelligence problems offer a high degree of parallelism. Yet there is no generally
accepted programming language or methodology for expressing AI problems for
massively parallel computation. The mainstay AI programming language Lisp
and the programming style currently used with Lisp machines will not be
effective on highly parallel computers. Xeither will the logic language Prolog as
presently cast.

The principal comment from the AI team is that VAL is not sufficiently
“high level” to be a suitable A I language. We are not certain what the scientist
means by “high level.” but one possibility is that he is disappointed by the
absence in V.4L of facilities to support data abstraction. The addition of such
facilities would make the programming of AI problems “more natural” and this
aspect will be considered for future revisions of VAL. Yet this change in VAL
would not increase the “expressive power” of the language.

It may be that the AI scientist is concerned that too much writing is
required to express an algorithm in VAL as compared to Lisp -- primarily due to
the strongly typed nature of VAL. This will be less of a problem once automatic
type inference is incorporated in the VAL compiler, as this will relieve the pro-
grammer from having to write most type declarations, while maintaining the
benefits of type checking by the compiler.

We were pleased to witness the experience of expressing a reasonably
authentic artificial intelligence problem in the VAL language and to become
acquainted with the issues of exploiting the power of a data flow computer in its
execution. We believe that many AI problems will be solvable with high perfor-
mance using the static data flow architecture.

-40-

8. Conclusions

posed static data flow computer architecture.
The following are the conclusions from the study about VAL and the pro-

8.1. Programming

8.1.1. New Approaches
One of the questions addressed by the study was, “To what extent would

data flow concepts suggest new approaches to problems?” To achieve maximally
parallel algorithms. Jack Dennis advised participants to return to basic princi-
ples: identify the mathematical model underlying the solution, express the data
dependency graph of the solution as part of an abstract algorithm, and finally
map the abstract algorithm into the data flow language. In terms of Figure 1,
he advised participants to back up to Stage 1 of the problem-solving process
rather than transliterate a Stage 2 algorithm or Stage 3 program.

K e observed that in six of the seven problems, the mathematical model is
well understood and the abstract algorithm is already an expression of a highly
parallel solution. Hence six of the teams spent their efforts on mapping their
abstract algorithms into V.4L. and the \’.%L algorithm into program-graph nota-
tion for compilation. Only in the AI problem was the mathematical model
sufficiently undeveloped that a retreat to this stage of the problem solving pro-
cess may be worthwhile.

It is reasonable to suppose that for well understood problems the
mathematics have evolved to the point that the abstract algorithm is already in
a highly parallel form. This finding may not generalize outside the study, how-
ever. because there are other problem domains where highly parallel abstract
algorithms have yet to be fully developed. Moreover, one team (Queueing Net-
works) showed that the most parallel abstract algorithm does not lead to the
fastest data flow algorithm.

Another implication of this finding is that future evaluations of this kind
may want t o pay special attention to being sure that the participants have
indeed demonstrated beyond reasonable doubt that their abstract algorithms are
in fact highly parallel.

8.1.2. Programming Environment
The MIT translator and interpreter were developed in 1979 and implement

what is no longer modern programming technology. One shortcoming is the lack
of assistance for writing, managing, or debugging VAL programs. This was seen
as a serious shortcoming by several of the participants. One scientist pointed
out that even the FORTRAN-style of debugging programs, using WRITE state-
ments to display intermediate results, is cumbersome in VAL.

VAL is designed to express algorithms that use a pure data flow model of
computation (see Section 5.1). However, the static data flow architecture

- 41 -

I

considered in the study=does not implement this ideal model. In particular, the
machine includes array memories, to support high performance operation, that
are not part of the model. The array memories are outside the scope of the
model and also outside the scope of \‘AL: a programmer cannot control array
memory activity via a VAL program. Several study team members were uncom-
fortable with this fact because they felt that they would need to control array
memory usage to achieve good performance of their application code (with
respect to the best performance that could be achieved). An ‘*advice file“ com-
panion to a VAL program could be used to provide a VAL compiler with infor-
mation to guide its allocation of array memory.

Although program graphs play a strong role in the abstract algorithm and
again in the mapping of VAL to machine code, there is no interactive graphics in
the programming environment. Several team members indicated that it might
be convenient if they could just draw the data flow graphs and have a graphical
editor and compiler translate them into the language of the machine. We envi-
sion that a programming environment could be constructed based on direct ren-
dition of data flow programs as graphs. The new language (“Visi-VAL”?) might
complement the current flat language, VAL, and is worth investigating.

8.1.3. Learning Effort
Although they had no prior experience with data flow machines, the pro-

grammers participating in the study took only a very short time to learn VAL
well enough to use it in their disciplines. (Most had learned VAL within two
days rather than five days as we had anticipated.)

In the AI area, there appears to be a much greater reliance on function
libraries (e.g., in LISP) and on software tools (e.g., run-time debugging aids and
powerful graphics interfaces) than in the scientific computing areas. The AI
team’s criticism of the data flow machine is based on the lack of libraries and
tools rather than on skepticism toward parallel programs. We conclude that the
data flow concepts are sufficiently intuitive and well represented by VAL that
they are easily grasped. It is likely that this was aided by the fact that the
majority of abstract algorithms were already in a highly parallel form.

8.2. Architecture

8.2.1. Array Memory Bandwidth
The Array Memory is the most problematic part of the architecture.

Arrays arise naturally because most of the abstract algorithms pass matrices
from one computational phase to another. The participants were initially told
to ignore the representation of arrays and instead think of the abstraction that
an array is stored inside a data token. Because in their experience the efficiency
of their algorithms depends critically on how array data is represented, the parti-
cipants did not generally accept this abstraction.

- 4a -

The bandwidth of the Array Memory is a concern. The aggregate
bandwidth available to the 256 PE machine is 1 GByte per second. This is com-
parable to that available from a Cray X-MP(4) Solid State Disk (2.5
GBytes/sec.). However. the individual bandwidth available to a PE is only 2
Mwords per second. Frequent access to the array memory by a PE (clock rate of
200ns) may significantly influence the achieved processing speed of the PE.
Some of the algorithms investigated in the study used enormous amounts of
array memory. some in the form of very large sparse matrices. The MIT
researchers have estimated that one of twenty memory references accessed an
array element. In practice, we found this ratio to be much higher.

8.2.2. Array Memory Function
Among the most important operations on arrays is transposition: the com-

putational phase that consumes an array may require the elements to flow in
different orders on program-graph edges from the orders in which they were gen-
erated. Transposit ion is handled in conventional machines by random-access
memory (RAM) -- the producing phase stores the array elements in memory
shared with the consuming phase. In a data flow machine, however, there is no
shared memory.

We conclude that the architecture needs to explicitly incorporate hardware
for transposing array data. This can be done with special purpose sorting net-
works or with a staging memory such as that in the MPP. A clearer
specification of array memory and transposition operations needs to be
developed.

8.2 3. Input /Output
The nature of the load on the interconnection network providing communi-

cation between the PES and between the data flow machine and its disks is
important. Knowledge of the characteristics of the load are essential to the pro-
cess of choosing an effective network. In particular, the capability to support
array transposition and high-bandwidth disk communication was found to be
essential. As a point of comparison to support these statements. the disks typi-
cally used on a Cray X-MP are capable of transferring data at 80 Mbits/second
and with ten of them connected to a single 1 / 0 processor and operating simul-
taneously, the system is capable of 500 Mbits or more per second. \Yhile the
aggregate bandwidth of the routing network is adequate to support a compar-
able data rate, this requires all 256 1/0 ports of the network versus one port on
a Cray. Thus to achieve comparable 1/0 bandwidth on the static data flow
machine would require data set partitioning over many more disks than the
Cray. For this reason some study participants felt that high 1/0 bandwidth was
not as readily available as on the Cray.

- 43 -

8.2.4. Processing Element Design
The Linear Systems team expended some effort assessing the quantitative

requirements for logical operations and floating point operations in their applica-
tion. They found that overall machine performance was sensitive to the ratio of
logic to floating point function units in each PE. For the linear systems applica-
tion a ratio of three to four logic units to one floating point unit is needed for
best performance. Essentially. a match of the number of various function unit
types in each PE with the relative numbers of operation types called for by a
data flow graph is needed so that one type of function unit is not a bottleneck.
This issue deserves further attention.

8.2.5. Cost
Lye estimate that the commercial cost of the machine would be in the range

of $5-10 million. This allows for labor. software. and marketing costs that would
be folded in. (See Appen-
dices.)

We recommend that a more careful study be made of the costs of building a
data flow machine and of procuring one commercially.

Xo software costs are included in these estimates.

8.3. General

8.3.1. Scaled-Down Machines
Two of the seven problems were unable to take full advantage of the full

power of the machine (1.28 GFLOPS). This appeared to result from the
mathematics of the problems themselves rather than from failure to begin with a
highly parallel abstract algorithm. On the other hand, five of the seven prob-
lems consumed all the computing power that was available.

We conclude that scaled-down versions of the machine (e.g., with 16 PES)
should be constructed so that domains requiring less power can obtain it at a
fraction of the cost of the full machine. For example, a 16-PE machine would be
comparable to a DEC V.4X 11/780 in cost but would be capable of solving prob-
lems in certain domains that now must use a Cray-class computer.

8.3.2. Cost Performance Advantage
It is a well-known rule of thumb for many of the study team members that

a Cray computer can readily deliver one-fourth of its rated peak speed to most
applications; greater speed is often obtainable at the price of increased program-
ming effort, including coding program sections in assembly language. Such rules
of thumb do not yet exist for static data flow computers.

For the problems studied, the cost-performance advantage of the data flow
machine appears significant. We estimated speed-up factors of roughly 1O:l
compared to today’s Cray computers. This ratio compares the best speed
estimated for the data flow machine (1.28 GFLOPS) to the best speeds seen for

-44-

applications codes on Cray-class computers (roughly 100 MFLOPS). G' wen a
data flow machine price estimate of as low as $5 million, it may have as much as
a 2:1 price advantage as compared to a Cray-class computer. Thus, we can esti-
mate an overall gain of up to roughly 2O:l in cost per solution with the static
data flow machine.

8.4. Further Work
We see two areas where further work is required: deeper analysis of the XlIT

static data flow machine and investigation into developing techniques for
evaluating new concurrent architectures. Each of these can proceed indepen-
dently. with knowledge gained in one contributing to the other.

In the first category. our workshop leaves gaps in the evaluation-picture of
the machine we studied. Further work requires the development of a prototype,
or better, an emulator for the static data flow machine so that complete applica-
tions can be compiled and executed. This would allow direct cost and perfor-
mance comparisons to existing supercomputers. An emulator would also allow
machine "tuning," that is, investigation of the effects of changing machine
parameters such as array memory size. network structure and speed, and pro-
cessing element structure.

The second category, developing and applying general methodologies for
evaluating new architectures, could provide a sound basis for comparing con-
current machines as they are proposed an developed. Our study of the static
data flow machine convinced us that taking real-world problems and implement-
ing them on the new machine is the best approach and yields the most valuable
results. We feel that much work could be done here and that our study is a
good first step.

- 45-

9. References
[Acke791

Ackerman. W. B. and J. B. Dennis. “VAL -- A Value-Oriented Algorithmic
Language: Preliminary Reference h4anua1,“ MIT/LCS/TR-218, 14as-
sachusetts Institute for Technology. Cambridge, MA (Jun 1979).

Ackerman. \Y. B.. ”Data Flow Languages,” Computer 15 (2) . pp. 15-25 (Feb
1982).

Ackerman, CY. B.. “Efficient Implementation of Applicative Languages,”
LCS/TR 323, MIT (Mar 1984).

Adams, G. B. and P. J. Denning. A T e n Year Plan for Concurrent Process-
ing Research, RIXCS (Mar 1984).

Adams, G . B., R. L. Brown, and P. J . Denning, “On Evaluating Concurrent
Architectures,” RIACS Technical Report, RIACS (May 1985).

Bobrow, D. G . , A. Collins, and editors, Representation and Understanding:
Studies of Cognitive Science, Academic Press, New York (1975).

Bobrow, R. J. and B. L. Webber. “Knowledge Representation for
Syntactic/Semantic Processing,’’ 1st A A A I , (1980).

Bruce. B.. “Case Systems for Natural Languauge,” rlrtificial Intelligence
6(4) , pp. 327-360 (1975).

Buzen, J. P., “Computational Algorithms For Closed Queueing Networks
With Exponential Servers.” CACM 16. pp. 527-531. (Sep 1973).

Chandy, K. M. and D. Neuse, “Linearizer: A Heuristic Algorithm For
Queueing Network llodels Of Computing Systems.“ C A CM 25, pp. 126-
133. (Feb 1982).

Cullingford, R.E., “Script Application: Computer Understanding of News-
paper Stories,” Computer Science Research Report #116, Yale (1978).

Davis, A. L. and R. M. Keller, “Data Flow Program Graphs,’’ Computer
15(2) , pp. 26-41 (Feb 1982).

I -4 c k e8 2]

[Acke84]

[Adam841

[Adam851

[Bobr 751

[Bobr80]

[Bruc 75)

[Buze73]

[Chan821

(Cu1178]

[Davi821

[Denn78]
Denning, P. J. and J. P. Buzen, “The Operational Analysis of Queueing
Network Models.” Computing Surveys 10, pp. 225-261. (Sep 1978).

Dennis. J. B. and G. R. Gao, “Maximum Pipelining of Array Operations on
Static Data Flow Machine,” Proc. 1989 Int’ l Conf. on Parallel Processing.
(Aug 1983).

Dennis. J. B.. “Data Flow Ideas for Supercomputers.“ Proc. COMPCON ’84
Conf., , pp. 15-19 (Feb 1984).

Dennis. J. B., G. R. Gao. and K. W. Todd, “Modeling the Weather with a
Data Flow Computer.“ IEEE Transactions on Computers C-33(7) (July
1984).

Dias. D. M. and J . R. Jump, “Analysis and simulation of buffered delta net-
works.“ IEEE Trans. Computers C-30, pp. 273-282 (Apr 1981).

Eberhardt. D. S. and K. Rowley, “An Analysis of Static Data Flow to a
Sample CFD 141gorithm,“ Technical Report, RIACS (Mar 1985).

Gao. G. R.. “An Implementation Scheme for Array Operations in Static
Data Flow Computers ,” MIT/LCS/ TR-280, Massachusetts Institute for
Technology, Cambridge, MA (May 1982).

Gurd, J. R., C. C. Kirkham, and I. Watson, “The Manchester Prototype
Dataflow Computer,” CA CM 28(1), pp. 34-52 (Jan 1985).

Lazowska, E. D., J. Zahorjan. G. S. Graham, and K. C. Sevcik,, Quantita-
tire System Performance: Computer System Analysis I‘sitig Queueing Net-
work Models, Prentice-Hall, Englewood Cliffs (1984).

Levin. E.. “Performance Evaluation of a Static Data Flow Processor for
Transformations of Large Arrays,’’ TR 85.1, RIACS (Jan 1985).

Merriam, M. L., “Application of Data Flow Concepts to a Multigrid Solver
for the Euler Equations,” Proc. 2nd Copper Mountain Conf. on Multigrid
Methods, (Apr 1985).

Reed, D. A. and M. L. Patrick, “A Model of Asynchronous Algorithms for
Solving Large, Sparse, Linear Systems,” Proc. 1984 Int ’1 Conf. on Parallel

[DennBS]

[DennSla]

[Denn84b]

[Dias8 11

[Eber851

[Gao82]

[G urd8 51

[Lazo841

[Levi85?

[Merr85]

[Reed841

- 47 -

Proceaaing, (Aug 1984).

Reed, D. A. and M. L. Patrick. “Iterative Solution of Large, Sparse Linear
Systems on a Static Data Flow Architecture: Performance Studies,” RIACS
Technical Report, RIACS (Feb 1985).

Reed. D. .4. and 33. L. Patrick. “Model of a Data Flow Architecture for the
Iterative Solution of Large. Sparse Linear Systems.“ Proc. 1085 Int’l Con!.
on Parallel Processing, (Aug 1985).

Reiser, M. and H. Kobayashi, “Queueing Xetworks With Multiple Closed
Chains: Theory and Computational Algorithms,’’ IBM J . Rt?D 19, pp. 283-
294. (May 1973).

Reiser, M. and S. S. Lavenberg. “Mean Value Analysis of Closed Multichain
Queueing Ketworks,” J A CM 27. pp. 313-322 (Apr 1980).

Riesbeck, C. K., “Computational understanding: Analysis of sentences and
cdntext.” AI Laboratory Memo 409. Stanford (1974).

Rumbaugh, J., “-4 Data Flow Multiprocessor,” IEEE Trans. Computers C-
26, pp. 138-146 (Feb 1977).

Schank, R. C. and C. Rieger, “Inference, and the Computer Understanding
of Natural Language,” Artificial Intelligence 5 , pp. 373-412 (1974).

Schweitzer, P. J., “Approximate Analysis of Multiclass Closed Networks of
Queues,” Proc. Int ’I Conf. on Stochastic Control and Optimizution, (1979).

[Reed85al

IReed8 3 b]

[Reis751

[Reis801

[Ries 7 41

[Rumb7 71

[Sc ha741

[Schw79]

[Sevc8 51
Sevcik, K. C. and P. J. Denning, “Execution of Queueing Xetwork Analysis
Algorithms on a Data Flow Computer Architecture,” RIACS Technical
Report, RIACS (1985).

- 48 -

APPENDICES

- 49-

10. Machine Cost Estimate
The hardware cost of the MIT data flow machine as specified for the study

will likely be in the rough neighborhood of the cost of one of today’s commer-
cially available supercomputers. This estimate is based on the following con-
siderat ions.

First, the majority component of the machine is memory. The array
memory consists of 64 Mwords of storage: this is eight times larger than typical
main memory sizes of current supercomputers. Main memory dominates the cost
of current supercomputers for machines with medium to large memory
configurations. Even though the Array Memory uses relatively slow memory, its
cost will dominate the hardware cost of the data flow machine. For the data
flow machine to be as cheap as current supercomputers. its memory must be one
eighth the cost per word. This cost is possible: significantly less is not.

Second. while the MIT data flow machine uses inexpensive PES, it uses
many of them. It is entirely reasonable to assume that 256 data flow machine
PES will not cost significantly less than the CPU cost of current supercomputers.
Thus, there is little overall cost advantage with respect to CPU.

Finally, peripherals for the data flow machine and a current supercomputer
will embody the same technology. Also, there is no reason to suppose that a
data flow machine will require fewer peripherals than existing machines, given a
comparable mission. Hence, peripheral costs are likely to be similar.

Thus, one can forecast that the MIT data flow machine specified in this
study, made available commercially, to cost on the order of $5 - 10 million.
Total costs including site preparation, software development, and operations
could easily be $20 - 30 million over a three to four year lifetime. Site prepara-
tion should be simpler that for current supercomputers due to the reduced cool-
ing requirements of the technology proposed for constructing the data flow
machine.

11. Questionnaire and Responses
Participants in the data flow study were presented with a questionnaire to

assess their subjective impressions and opinions. The questionnaire is presented
one question at a time and the individual attributed responses follow.

Question 1: What background of knowledge about data flow and VAL did you
have before the Study?

Briggs (AI):

Eberhardt (CFD) :

No background in VAL: basic theoretical acquaintance with da ta flow in general.

M y previous experience with data flow was a naive understanding of the basic
principles (activity templates. etc.). My background in applicative languages,
such as V A L . was non-existent.

Levin (Chemistry) :

Merriam (CFD) :
None.

I had seen several lectures, talked t o Jack Dennis personally on one occasion. Also
I read all the papers provided before the class.

Partridge (Chem.):
I had read some of the da t a flow literature-would describe my background as hav-
ing a basic understanding of what da t a flow is and what some of the major con-
cerns are.

Patrick (Lin. Sys.) :
I had read three t o four papers on d a t a flow languages and architectures.

Question 2: Please list the programming languages and computers with which
you would be comfortable attempting a programming task as part of your regu-
lar job activities. In a separate list name those languages and computers you
most often use on the job.

Briggs (AI):
Programming languages with which I am comfortable: LISP. Prolog, C, Pascal,
Rasic, DB Query Languages. Languages most often used. Prolog, C.

Eberhardt (CFD) :
FORTRAN is the language that I have most experience in, but occasionally I use
Pascal. Pascal has too many problems when dealing with large numerical array
structures so generally I avoid it. Most of the NASA work I have done has been
on the VAX. I have not used the Cray X-h4P extensively but I understand it well.
I anticipate tha t my future activities will draw heavily on the Cray resource. If an
applicative language were available, with a good and trustworthy compiler I think
I would use it instead of FORTRAN. First, however, 1 / 0 will have t o be changed so
tha t information can be extracted directly from a nested function. In response t o
the question of what machine I would feel comfortable with, my answer is tha t I
am trying t o understand as many architectures as I can since it is my job t o try t o

- s1-

develop algorithms for them.

Levin (Chemistry) :

hlerriam (CFD) :
(a) FORTRAN. (b) FORTRAN; Cray X/MP. CDC Cyber 205, VAX 11/7XX

Languages: FORTRAN’. \.ectoral‘ Pascal. CFU. Lisp. Basic. Compass (assembly
language), MRS. Computers: Cray X ’MP-22*. CDC 7600, Cyber 205. Illiac IV.
VAX 11 ‘7x)iX. IBM 360 67. C’DC 6400. IBM 1800. DEC-20.

Partridge (Chem.):
Languages: (w i t h an estimated competenc) level--10 know fluently) FORTRAN

Patrick

(IO). Pascal (5) . assemblers (Cray. V.4X. CDC 7600) (4) . At one time I pro-
grammed in Basic. PL;l. and Algol. Computers: Cray XMP. CDC Cyber 205,
VAX-11 ‘780 (VMS) . CDC 7600 (SCOPE). CDC 835 (NOS). In work related ap-
plications almost everything has been in FORTRAN. Assemblers only needed for
coding small kernels and in debugging.

(Lin. Sys.):
Most of my programming experience is with FORTRAN. PL. 1. and Pascal running
on IBM mainframes and PCs. 1 have some experience using the early FORTRAN
which ran on the Cray 1. More recently I have been involved in the development
of a parallel programming environment known as PISCES (Parallel Implementa-
tion of Scientific Computing Environments). My primary role has been to imple-
ment some classical numerical linear algebra algorithms using PISCES and to give
feedback to the primary designer of the system (T.W. P r a t t) concerning its usabil-
i ty in scientific computations. PISCES is currently being implemented as an ex-
tension to FORTRAN 77. A PISCES program is translated by an interpreter into
executable FORTRAN 77 code. The interpreter is currently running under UNIX on
a VAX 750.

Question 3: What do you like and dislike about the language constructs in
V A L ? Why?

Briggs (AI):
The only aspect of VAL I can say I “like” is tha t algorithms which exploit paral-
lelism are encouraged, I found programming in a low-level language like VAL to
be extremely awkward, especially in high-level symbol manipulation. My need to
encode a series of sequential computations resulted in a series of definitions in a
“let” block which did the work, followed by a trivial ‘(in” component, which sim-
ply returns the answer. My impression is that VAL is designed for FORTRAN pro-
grammers, and the designers did not really have A I applications in mind.

Eberhardt (CFD):
At this point feel I can rave about VAL. I felt tha t programming could be handled
in a logical and precise manner which reflects the notation of the mathematical al-
gorithm. I can understand and appreciate why Bill Ackerman believes he can
work his miracles with his compiler because the language virtually spits out all of
the concurrency in the code. My experience with developing concurrent codes in
FORTRAN really drives this point home. On the negative side, as a FORTRAN pro-
grammer I do not want t o relearn syntax. I have never liked the semicolon a t the
end of each record tha t free style languages require. Nor do I like having my
main, outer shell of my program a t the bottom instead of the top where it be-
longs. Those are minor problems tha t I can get used to. There is, however, one

- 52 -

.

serious problem tha t must be corrected for the language to be at all useful for de-
bugging: the 1/0 problem. If YOU want t.0 look a t a specific variable in a nested
function within a forall loop, forget it. You have to pass the argument out
through the calling function. requiring global program changes. Also. as pointed
out by Harry Partridge. a forall loop would have 1 0 Le converted to a for i ter
loop if only one instance of t h e arra) calculation were needed. This must be
fixed!!!!!

Levin (Chemistry):

Merriam (CFD) :
(1) Seem t o work. (2) Easy to learn.

Many of the features of VAL that are nice are also features of Vectoral. These in-
clude: dynamic memory, unlimited identifier name length, structured constructs,
parallel constructs, strong typing, also (absent from Vectoral) no side effects. It
lacks: recursion. synonyms (not equivalence), ability t o make a name synonymous
with a number in a certain context, ability to iterate over an enumerated type.

Part ridge (Chem.) :
Xly major concerns with \-AL are:
(a) not convinced that 1 have to completely (or even largely) give up compatibility
with FORTRAN to effectively utilize a da ta flow machine. The codes are large and
it would take an enormous effort to translate them t o a VAL-like language. While
admittedly I am comfortable with FORTRAN and rather inexperienced with VAL, I
do not see tha t VAL offers me an!: significant advantages in describing, coding, or
debugging my applications. VAL’S major advantage is tha t it is apparently easier
t o write an optimized compiler.
(b) It appears that even minor changes in a code can involve rather major coding
changes, i.e., codes in VAL are not easy to modify. Examples are: adding counters
would change foralls t o for i t e rs and debug modifications might involve
significant changes in calling sequences.
(c) Memory management capabilities are not conveniently present. These are im-
portant if the memory requirements exceed the machine size of localization of
memory references needs to be (artificially) enforced.
(d) I j O capabilities are nonixistent. No print, format, namelist, buffer in, buffer
out , direct access files, et cetera.

Other comments (not in any order).
(a) Debugging looks like it would be difficult. Need a sequential mode.
(b) 1 liked the forall construct but found the for iter construct very painful to
use. This is particularly true for nested for i te rs . Labels would help make things
easier t o read.
(c) Surprisingly. 1 did not find the single definition rule much of a handicap. I‘m
not sure this is consistent with the comment on the for iter construct but . . .
(d) The external statement is s royal pain!
(e) Syntax. (1) Having to end (some) lines with a “;” is a nuisance. Most lines
do not continue. (2) The symbol used most frequently is the := for define or re-
placement, yet it requires three keystrokes t o type. I much prefer the = sign (only
one keystroke). (3) I don’t particularly like the - and I symbols for not and or.
(f) I would like a common statement at least for parameters tha t will not be
changed in subsequent function calls.
(g) VALSYS aborts with the 6rst syntax error and does not produce a useful list-
ing (formatted).
(h) VALSYS kicks you out for certain errors and array input is very cumbersome.

- 53-

Why strong typing on input?

Patzick (Lin. Sys.):
The forall construct is excellent for expressing natural concurrency within a corn-
putation and a n y parallel programmine language should have such a construct. I
found the for-i ter construct awkward to use Clearly such a construct is needed.
given the iterative nature of many scientific computations. However. the advan-
tages of the for-iter over repeat-until or do-while is not clear given the experi-
ence of this study.

Question 4: In what ways is better for your application than the
language(s) you typically use? In what ways is VAL worse?

Briggs (AI):
I cannot really say VAL has any advantages over LISP and Prolog for AI pro-
gramming. 1 cannot imagine writing a significant A I program in VAL.

Eberhardt (CFD) :

Levin (Chemistry) :

Merriam (CFD) :

See answer to Question 8;

No apparent advansage for my problem over FORTRAN.

VAL is clearly better than FORTRAN but then, so is almost anything. VAL has no
advantage over Vectoral that I can see. On the minus side YAL: doesn’t exist, has
no I . 0 and no disk, suffers from inability to pass arguments several levels deep
without having them in all intermediate routines, and doesn’t, allow recursion.

Partridge (Chem.) :
VAL, or any functional language, is better only if needed t o obtain supercomputer
preformance on a machine.

Patrick (Lin. Sys.):
(a) A really nice feature is not having to dimension arrays when writing the pro-
gram and not having to deal with common blocks. I also found the forall eval
operation to be very helpful. The value oriented nature of the language makes use
of the language cleaner. (b) 1 found input and output t o be awkward. For a
research language. the run-time information produced by VALSY S was very disap-
pointing .

Question 5: Describe the experience you had in changing from your usual pro-
gramming techniques to those of data flow.
Briggs (AI):

I had to go back L U the algorithm since translation from Prolog t o VAL would in-
volve changing the entire structure of the program. As mentioned above, whenev-
er sequential computation was needed, a series of variable definitions were con-
structed which implicitly carried out the computation. Parallelisms not exploited
in the Prolog were made explicit in VAL. The lack of side effects required a
different approach since the Prolog program outputs at the bot tom level or the
leaves of the computation tree, in VAL the output had to be done at the end. This
also I find annoying since the brain obviously does not work this way. The lack of
a global database required passing databases as arguments, rather than simply ac-
cessing them as in Prolog. The shortcomings of lack of shared memory are com-
mented upon in my report.

- 54 -

Eberhardt (CFD) :
The language itself helped change the programming technique since it allows you
t o follow a logical approach. However. this benefit could be due t o lack of experi-
ence with the language and the fact that no machine will run compiled VAL.
Therefore. i t is difficult to assess the changes in programming technique because
many of the changes could be due to lack of knowledge.

Levin (Chemistry):
The two outstanding observations were: (1) The "number crunching" implementa-
tion was very easy, but (2) the data handling and 1 i0 control was almost totally
lacking, or. at least. not yet defined.

Merriam (CFD) :

Partridge (Chem.):
No change appears to be required.

Programming technique, not surprisingly, did not change - the workshop was
only two weeks.

Patrick (Lin. Sys.):
The application I was considering did not involve converting a large FORTRAN
program t o VAL. I really only needed t o use a few of the constructs so I didn't
have any real difficult,y in writing the VAL code. My experience with PISCES had
already taught me to think "parallel" so t.hat made using VAL less of a problem.

Question 6: How would you foresee that code development for new applications
would proceed using VAL versus your usual programming language(s) ? Include
the effects of the programming environment for each.
Briggs (AI):

The A1 community would never accept VAL since t.hey are used to high level pro-
gramming environments. If such a language was built on top of VAL, and if
shared memory was allowed VAL might catch on.

Eberhardt (CFD) :
If the compiler can live up to all its promises then I think tha t code development
would be simple. T o program without memory management headaches or having
t o worry about pipelines would be wonderful. It appears tha t the ideal implemen-
tation of da t a flow and VAL would allow a relatively naive approach t o program-
ming. In this st,udy we worked out in more detail how the machine would be
"filled" but I think in practice we would not have to.

Levin (Chemistry):
Coding of arithmetic operations is much easier in VAL, but there is a lot missing
with regard t o da ta manipulation and also some very optimistic assumptions
about what the compiler can do.

Merriam (CFD) :
Assuming tha t the missing constructs are not required, VAL would be about even
with Vectoral. There would of course be a large training and code conversion ex-
pense.

Partridge (Chem.) :
The emphasis on vectorizing inner loops would be relaxed. This would eliminate
some of the contortions one goes through. By the same token however, similar
rearrangements might be needed to localize memory references.

- 5 5 -

Patrick (Lin. Sys.):
I feel I would need t o do a really large application program and get comfortable
with VAL before 1 could make a reasonable comparison. Given my limited experi-
ence with VAL. my impression is that VAL would be a clean. nice language to use
for a large code. 1 goi no real experience w - i t h 1 '0 in \ 'AL but 1 have the irnpres-
sion i t may be a problem.

Question 7: Do you think the data flow techniques present,ed and practiced in
this study are or will become useful for your applications? Are they more
"natural" for your problem domain than conventional concepts?

Briggs (AI):
The basic concept of parallelism is more natural than pure sequentialism. I am
not convinced that da ta flow models are more natural however. Certainly, shared
memory is more natural than lack thereof: and while some computations in the
brain are "data-driven"? not all are.

Eberhardt (CFD) :
There is no doubt t h a t the da ta flow concepts are more natural t o my CFD appli-
cations. The architecture allows matrix elements t o be computed concurrently as
though defining the matrix a t once, instead of defining the elements sequentially.
I think that if the machine works, there will be a large number of CFD users (ex-
cept the conservative ones).

Levin (Chemistry) :

Merriam (CFD):
NO NO.

Partridge (Chem.) :

Looks o k . but no obvious advantages noted

1 think there is sufficient parallelism present in our application that if such a
machine is built that we will be able to use i t .

Patrick (Lin. Sys.):

Question 8: Does data flow allow or encourage you to consider your approach
to problem solving in your applications area in a new light? If so, did this lead
to new ways of thinking about your application?
Briggs (AI):

See answer to the question immediately preceding this one

Data flow did encourage me to think of A I problems in a new light, but it was the
concept of parallelism that was the crucial difference in my thinking. Other as-
pects of d a t a flow did not seem applicable i o the domain of AI.

Eberhardt (CFD) :
The primary insight I got into my algorithm from the study was a method for
performing Gaussian Elimination across an array of processors. The processors
d o not necessarily have to be d a t a flow either. With d a t a flow, however, I feel
tha t less will be required of me in terms of extracting parallelism.

Levin (Chemistry):

Merriam (CFD) :
Not particularly .

No. No more than any extended look at an algorithm.

- 66 -

Partridge (Chem.):
No, but the algorithm (or my implementation) will probably need to be modified
t o be efficiently mapped.

Patrick (Lin. Sys.):
.\gain experience gained from this study 1s limited However. 1 felt. when thinking
about the VAL implementation of my problem solution. the need to write code
that could be pipelined. Also 1 was concerned as to whether my code had been
written so that computation and communication could be overlapped. Without.
this my code will perform very poorly on the static da ta flow machine. 1 am in-
terested t o know whether other participants felt the same pressures concerning
pipelining and communication and computation overlap when writing their code.

Question 9: What percent of the way did you get toward preparing you appli-
cation for data flow during the study?

Briggs (-41) :

Eberhardt (CFD):

The program was completely rewritten.

M y CSCM code in one-dimension is completed except the 1 , ' 0 and initialization. I
intend t o complete it and test it on the interpreter if possible. 1 would also like to
see it run completely (to convergence) on a prototype machine, if possible. If the
prototype test is successful. I would be willing go program a two-dimensional or
three-dimensional problem for future study.

Levin (Chemistry) :
I finished a small but computationally intensive module that is 10 percent of the
total code.

Merriam (CFD):
The jury isn't in yet but I would say about 80%

Partridge (Chem.) :
?

Patrick (Lin. Sys.):
As mentioned earlier, my code was relatively simple so I was able to complete the
code.

Question 10: What do you think are the strong and weak points of the static
data flow architecture?

Briggs (AI):

Eberhardt (CFD) :

The basic weakness is lack of shared memory

The strong points of the static architecture is tha t less network routing is needed.
However, there is a problem if you have a reasonably long and wide pipeline. You
may have t o spread the pipe over several processors since each processors instruc-
tion memory is not large enough. Also, in my application, certain functions are
executed at different times. In particular, there is the block tridiagonal fill rou-
tines and the block tridiagonal inversion routines. Both of these blocks of code
must reside in the processors instruction memory even though they never need to
overlap in some applications. It may make sense t o allow them to be allocated t o
processors dynamically.

- 57 -

Levin (Chemistry):
Strong: Easy to get massive parallelism. Weak: Doesn’t work too well for short
pipelines. Also, may have trouble with routing network for problems tha t require
lots of data to be sent between PES.

Merriam (CFD) :
T h e strong points are as follows: (a) betI.er resolution of memory contention prob-
lems in multiprocessing: (b) potential for better performance per uni t cost through
usc of loher technology chips: (c) better Lreatment of exceptions (boundary condi-
tions) and indirect addressing; (d) hardware support for structured da ta types:
and (e) potential for better scaling of performance to machine complexity. The
weak points are: (a) only large problems can run fast and (b) a very difficult com-
piler problem. Further difficulties in the suggested hardware implementation are;
(a) a severe bottleneck in the Array Memory bandwidth; (b) a difficulty in choos-
ing the size of the instruction buffer (too small! PE goes idle; too big, a crucial in-
struction isn’t done. another PE goes idle); (c) no I/O; (d) one user; and (e) a
difficult network problem.

Partridge (Chem.) :
The strongest point is that it allows one t o exploit enormous degrees of parallel-
ism. This can be done even when the code would not easily vectorize. The weak
points are: VAL, static code allocation to processors, and 110.

Patrick (Lin. Sys.) :
1 want t o delay a careful answer t o this question until 1 finish my analysis of how
my code maps onto the static d a t a flow machine. The close relationship between
the d a t a tlow graph for a computation and the architecture of the machine is very
appealing. A concern is whether the routing network is really a problem or not
(Le., is it a bottleneck). Also the idea that every instruction must receive an ack-
nowledge signal before it can fire again is bothersome. This seems like synchroni-
zation after every operation. My experience to da te is t h a t the cost of synchroni-
zation is what most often makes parallel computation not cost effective. More im-
portantly, it appears tha t the key to success is pipelining and the ability of the
VAL compiler t o translate the code so that d a t a can be pipelined through the in-
structions in the PES. An import.ant question is what is the overhead associated
with this translation and what is the nature of the computations which allow this
cost G O be affordable. 1 feel tha t this question should be carefully considered. One
final issue is the amount of storage required for multiple copies of the instructions
and data required to make opt.ima1 use of the hardware. I still do n o t clearly
undersband the ramifications of the idea that arrays are treated as values and
when multiple copies of arrays need to be stored.

- 5 8 -

